1
|
Zhou L, Yuan M, Han Y, Yu Y, Liu Y, Wu D, Chen Y, Sheng B, Chen S, Wang J, Xue X. Micellar casein were constructed to improve the encapsulation efficiency of algae oil docosahexaenoic acid by transglutaminase-coupled phosphoserine peptide chelating with Ca 2. Int J Biol Macromol 2025; 297:139939. [PMID: 39824426 DOI: 10.1016/j.ijbiomac.2025.139939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/12/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Micelle systems using safe food-grade biopolymers are of particular interest for the encapsulation and delivery of nutrition components. Micellar casein (MC) was assembled using transglutaminase (TGase) to couple with phosphoserine peptide, which enhance the stability of docosahexaenoic acid (DHA) from algae oil. The mechanism behind the construction of MC-phosphoserine peptide and the encapsulation of DHA was explored. The results showed that the average particle size of the MC-phosphoserine peptide was 155.09 nm, when the mass ratio of polypeptide was 3 %, TGase activity was 4.5 U and pH 6.5. The recombinant MC-phosphoserine peptide system can improve the emulsification and digestive stability of DHA compared to the control MC. Chelation interaction between phosphoserine peptide and MC played an important role in increasing the stabilization reassembly MC. The phosphoserine peptide high calcium-binding capacity enhances encapsulation efficiency and digestion sustained-release in self-assembled micelles for fat-soluble substances.
Collapse
Affiliation(s)
- Ling Zhou
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Mengtin Yuan
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Yanping Han
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Ya Yu
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Yanan Liu
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Dongxu Wu
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Ya Chen
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Bulei Sheng
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Sihan Chen
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Juhua Wang
- College of Veterinary Medicine, Anhui Agriculture University, Hefei, Anhui 230036, China.
| | - Xiuheng Xue
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China.
| |
Collapse
|
2
|
Alijani S, Hahn A, Harris WS, Schuchardt JP. Bioavailability of EPA and DHA in humans - A comprehensive review. Prog Lipid Res 2024; 97:101318. [PMID: 39736417 DOI: 10.1016/j.plipres.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
The bioavailability of long-chain omega-3 fatty acids is a critical yet often overlooked factor influencing their efficacy. This review evaluates the bioavailability of EPA/DHA from acute (single-dose) and chronic human studies, focusing on (a) chemical forms such as triacylglycerols (TAG, natural and re-esterified, rTAG), non-esterified fatty acids (NEFA), and phospholipids (PL) from sources like fish, krill, and microalgae, and (b) delivery methods like microencapsulation and emulsification. Bioavailability for isolated chemically forms followed the order: NEFA > PL > rTAG > unmodified TAG > ethyl esters (EE). However, varying oil compositions complicate conclusions about source-specific bioavailability. Significant differences observed in acute bioavailability studies (e.g., faster absorption) often did not translate into long-term impacts in chronic supplementation studies. This raises questions about the clinical relevance of acute findings, especially given that n-3 PUFA supplements are typically consumed long-term. Methodological limitations, such as inappropriate biomarkers, short sampling windows, and inadequate product characterization, hinder the reliability and comparability of studies. The review emphasizes the need for standardized protocols and robust chronic studies to clarify the clinical implications of bioavailability differences. Future research should prioritize biomarkers that reflect sustained n-3 PUFA status to better understand the health benefits of various EPA and DHA formulations.
Collapse
Affiliation(s)
- Sepideh Alijani
- Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany; Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - William S Harris
- The Fatty Acid Research Institute, 5009 W. 12th St. Ste 5, Sioux Falls, SD 57106, United States; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, United States
| | - Jan Philipp Schuchardt
- Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany; The Fatty Acid Research Institute, 5009 W. 12th St. Ste 5, Sioux Falls, SD 57106, United States.
| |
Collapse
|
3
|
Zhang L, Hu Y, Jiang L. Advancements in emulsion systems for specialized infant formulas: Research process and formulation proposals for optimizing bioavailability of nutraceuticals. Compr Rev Food Sci Food Saf 2024; 23:e70043. [PMID: 39455164 DOI: 10.1111/1541-4337.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
With the rapid advancements in nutrition and dietary management, infant formulas for special medical purposes (IFSMPs) have been developed to cater to the unique nutraceutical requirements of infants with specific medical conditions or physiological features. However, there are various challenges in effectively preserving and maximizing the health benefits of the specific nutraceuticals incorporated in IFSMPs. This review provides an overview of the nutritional compositions of various IFSMPs and highlights the challenges associated with the effective supplementation of specific nutraceuticals for infants. In addition, it emphasizes the promising potential of emulsion delivery systems, which possess both encapsulation and delivery features, to significantly improve the solubility, stability, oral acceptance, and bioavailability (BA) of nutraceutical bioactives. Based on this information, this work proposes detailed strategies for designing and developing model IFSMP emulsions to enhance the BA of specially required nutraceuticals. Key areas covered include emulsion stabilization, selective release mechanisms, and effective absorption of nutraceuticals. By following these proposals, researchers and industry professionals can design and optimize emulsion-based IFSMPs with enhanced health benefits. This review not only outlines the developmental states of IFSMP formulations but also identifies future research directions aimed at improving the physiological health benefits of IFSMPs. This effort lays the theoretical groundwork for the further development of emulsion-type IFSMP in infant formula (IF) industry, positioning the IF industry to better meet the complex needs of infants requiring specialized nutrition.
Collapse
Affiliation(s)
- Liling Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Yang Hu
- Department of Scientific and Technological Innovation, Future Food (Bai Ma) Research Institute, Nanjing, Jiangsu, China
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Chen Y, Gu J, Sun Y, Ding Y, Yang X, Lan S, Ding J, Ding Y. Insight into low methoxyl pectin enhancing thermal stability and intestinal delivery efficiency of algal oil nanoemulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8356-8367. [PMID: 38989609 DOI: 10.1002/jsfa.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Algae oil has garnered widespread acclaim due as a result of its high purity of docosahexaenoic acid (DHA) and excellent safety profile. The present study aimed to develop stable nanoemulsions (NEs) systems containing DHA from algae oil through thermal sterilization by combining modified whey protein concentrate (WPC) with low methoxyl pectin (LMP), as well as to investigate the impact of LMP concentration on the thermal stability and the gastrointestinal delivery efficiency of DHA NEs. RESULTS The addition of LMP enhanced the stability of the emulsion after sterilization, at the same time as improving the protective and sustained release effects of DHA in the gastrointestinal tract. Optimal effect was achieved at a LMP concentration of 1% (10 g kg-1 sample), the stability of the emulsion after centrifugation increased by 17.21 ± 5.65% compared to the group without LMP, and the loss of DHA after sterilization decreased by only 0.92 ± 0.09%. Furthermore, the addition of 1% LMP resulted in a substantial reduction in the release of fatty acids from the NEs after gastrointestinal digestion simulation, achieving the desired sustained-release effect. However, excessive addition of 2% (20 g kg-1 sample) LMP negatively impacted all aspects of the NEs system, primarily because of the occurrence of depletion effects. CONCLUSION The construction of the LMP/WPC-NEs system is conducive to the protection of DHA in algae oil and its sustained-release in the gastrointestinal tract. The results of the present study can provide reference guidance for the application of algae oil NEs in the food field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jipeng Gu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuan Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Siqi Lan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jiayue Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
5
|
Yu Z, Zhou L, Chen Z, Chen L, Hong K, He D, Lei F. Fabrication and Characterization of Docosahexaenoic Acid Algal Oil Pickering Emulsions Stabilized Using the Whey Protein Isolate-High-Methoxyl Pectin Complex. Foods 2024; 13:2159. [PMID: 38998664 PMCID: PMC11240950 DOI: 10.3390/foods13132159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, the whey protein isolate-high-methoxyl pectin (WPI-HMP) complex prepared by electrostatic interaction was utilized as an emulsifier in the preparation of docosahexaenoic acid (DHA) algal oils in order to improve their physicochemical properties and oxidation stability. The results showed that the emulsions stabilized using the WPI-HMP complex across varying oil-phase volume fractions (30-70%) exhibited consistent particle size and enhanced stability compared to emulsions stabilized solely using WPI or HMP at different ionic concentrations and heating temperatures. Furthermore, DHA algal oil emulsions stabilized using the WPI-HMP complex also showed superior storage stability, as they exhibited no discernible emulsification or oil droplet overflow and the particle size variation remained relatively minor throughout the storage at 25 °C for 30 days. The accelerated oxidation of the emulsions was assessed by measuring the rate of DHA loss, lipid hydroperoxide levels, and malondialdehyde levels. Emulsions stabilized using the WPI-HMP complex exhibited a lower rate of DHA loss and reduced levels of lipid hydroperoxides and malondialdehyde. This indicated that WPI-HMP-stabilized Pickering emulsions exhibit a greater rate of DHA retention. The excellent stability of these emulsions could prove valuable in food processing for DHA nutritional enhancement.
Collapse
Affiliation(s)
- Zhe Yu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
| | - Li Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430023, China
| | - Zhe Chen
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430023, China
| | - Ling Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
| | - Kunqiang Hong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Dongping He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Fenfen Lei
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| |
Collapse
|
6
|
Ariz I, Ansorena D, Astiasaran I. In vitro digestion of beef and vegan burgers cooked by microwave technology: Effects on protein and lipid fractions. Food Res Int 2024; 186:114376. [PMID: 38729723 DOI: 10.1016/j.foodres.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Commercial beef burgers and vegan analogues were purchased and, after a microwave treatment, they were submitted to an in vitro digestion (INFOGEST). Vegan cooked burgers showed similar protein content (16-17 %) but lower amounts of total peptides than beef burgers. The protein digestibility was higher in beef burgers. Peptide amounts increased during in vitro digestion, reaching similar amounts in both types of products in the micellar phase (bioaccessible fraction). The fat content in cooked vegan burgers was significantly lower than in beef burgers (16.7 and 21.2 %, respectively), with a higher amount of PUFAs and being the lipolysis activity, measure by FFA, less intense both after cooking and after the gastrointestinal process. Both types of cooked samples showed high carbonyl amounts (34.18 and 25.51 nmol/mg protein in beef and vegan samples, respectively), that decreased during in vitro digestion. On the contrary, lipid oxidation increased during gastrointestinal digestion, particularly in vegan samples. The antioxidant capacity (ABTS and DPPH) showed higher values for vegan products in cooked samples, but significantly decreased during digestion, reaching similar values for both types of products.
Collapse
Affiliation(s)
- I Ariz
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - D Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - I Astiasaran
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
7
|
Ansorena D, Astiasaran I. Natural antioxidants (rosemary and parsley) in microwaved ground meat patties: effects of in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4465-4472. [PMID: 38345147 DOI: 10.1002/jsfa.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Minimizing food oxidation remains a challenge in several environments. The addition of rosemary extract (150 mg kg-1) and lyophilized parsley (7.1 g kg-1) at equivalent antioxidant activity (5550 μg Trolox equivalents kg-1) to meat patties was assessed in terms of their effect during microwave cooking and after being subjected to an in vitro digestion process. RESULTS Regardless of the use of antioxidants, cooking caused a decrease of the fat content as compared to raw samples, without noticing statistical differences in the fatty acid distribution between raw and cooked samples [44%, 47% and 6.8%, of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA), respectively]. However, the bioaccessible lipid fraction obtained after digestion was less saturated (around 34% SFA) and more unsaturated (35% MUFA +30% PUFA). Cooking caused, in all types of samples, an increased lipid [thiobarbituric acid reactive substances (TBARS)] and protein (carbonyls) oxidation values. The increase of TBARS during in vitro digestion was around 7 mg malondialdehyde (MDA) kg-1 for control and samples with parsley and 4.8 mg MDA kg-1 with rosemary. The addition of parsley, and particularly of rosemary, significantly increased the antioxidant activity (DPPH) of cooked and digested microwaved meat patties. CONCLUSION Whereas rosemary was effective in minimizing protein oxidation during cooking and digestion as compared to control samples, parsley could only limit it during digestion. Lipid oxidation was only limited by rosemary during in vitro digestion. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Diana Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Iciar Astiasaran
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
8
|
Homroy S, Chopra R, Singh PK, Dhiman A, Chand M, Talwar B. Role of encapsulation on the bioavailability of omega-3 fatty acids. Compr Rev Food Sci Food Saf 2024; 23:e13272. [PMID: 38284597 DOI: 10.1111/1541-4337.13272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Omega-3 fatty acids (omega-3 FAs) have been widely recognized for their therapeutic advantages, including anti-inflammatory and cardioprotective properties. They have shown promise in enhancing regulatory function, promotingdevelopment and mitigating the progression of diabetes and cancer. The scientific communities, along with industries, are actively endorsing initiatives aimed at increasing the daily intake of lipids rich in omega-3 FAs. Nevertheless, incorporating polyunsaturated FAs (PUFAs) into food products poses several challenges due to their susceptibility to oxidation when exposed to oxygen, high temperatures, and moisture. This oxidative deterioration results in undesirable flavours and a loss of nutritional value. Various methods, including physical blending, interesterification, and encapsulation, have been utilized as ways to enhance the stability of edible oils rich in PUFA against oxidation. Encapsulation has emerged as a proven strategy for enhancing the oxidative stability and functional properties of omega-3 FA-rich oils. Multiple encapsulation methods have been developed to stabilize and improve the delivery of omega-3 FAs in food products. The selection of an appropriate encapsulation method depends on the desired application of the encapsulated oil. In addition, encapsulation enhances the bioavailability of omega-3 FAs by promoting increased absorption of the encapsulated form in the intestinal epithelium. This review discusses the techniques and principles of omega-3 FA-rich oil encapsulation and its role in improving stability and bioavailability. Furthermore, it also investigates the potential health benefits of these encapsulated oils. This review explores the variations in bioavailability based on encapsulation techniques and processing, offering vital insights for nutrition and product development.
Collapse
Affiliation(s)
- Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition & Food Technology, Institute of Home Economics, University of Delhi, Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
9
|
Zhao P, Ji Y, Yang H, Meng X, Liu B. Soy Protein Isolate-Chitosan Nanoparticle-Stabilized Pickering Emulsions: Stability and In Vitro Digestion for DHA. Mar Drugs 2023; 21:546. [PMID: 37888481 PMCID: PMC10608249 DOI: 10.3390/md21100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
The purpose of the study was to investigate the stability and oral delivery of DHA-encapsulated Pickering emulsions stabilized by soy protein isolate-chitosan (SPI-CS) nanoparticles (SPI-CS Pickering emulsions) under various conditions and in the simulated gastrointestinal (GIT) model. The stability of DHA was characterized by the retention rate under storage, ionic strength, and thermal conditions. The oral delivery efficiency was characterized by the retention and release rate of DHA in the GIT model and cell viability and uptake in the Caco-2 model. The results showed that the content of DHA was above 90% in various conditions. The retention rate of DHA in Pickering emulsions containing various nanoparticle concentrations (1.5 and 3.5%) decreased to 80%, while passing through the mouth to the stomach, and DHA was released 26% in 1.5% Pickering emulsions, which was faster than that of 3.5% in the small intestine. After digestion, DHA Pickering emulsions proved to be nontoxic and effectively absorbed by cells. These findings helped to develop a novel delivery system for DHA.
Collapse
Affiliation(s)
| | | | | | | | - Bingjie Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (P.Z.); (Y.J.); (H.Y.); (X.M.)
| |
Collapse
|
10
|
Cofrades S, Hernández-Martín M, Garcimartín A, Saiz A, López-Oliva ME, Benedí J, Álvarez MD. Impact of Silicon Addition on the Development of Gelled Pork Lard Emulsions with Controlled Lipid Digestibility for Application as Fat Replacers. Gels 2023; 9:728. [PMID: 37754409 PMCID: PMC10530966 DOI: 10.3390/gels9090728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Pork lard gelled emulsions stabilized with two proteins [soy protein concentrate (SPC) or a pork rind protein extract (PRP)], both with and without added silicon (Si) from diatomaceous earth powder, were gelled by microbial transglutaminase and к-carrageenan. These gelled emulsions (GEs), intended as fat replacers, were evaluated in different aspects, including microstructure and technological properties during chilling storage. In addition, in vitro gastrointestinal digestion (GID) with an analysis of lipolysis and lipid digestibility was also evaluated. All GEs showed adequate technological properties after 28 days of chilling storage, although the SPC-stabilized GEs showed better gravitational and thermal stability (~4% and ~6%, respectively) during chilling storage than the PRP-stabilized ones (~8 and ~12%, respectively). PRP developed larger flocculates restricting pancreatic lipase-mediated lipolysis during intestinal digestion. The addition of Si to both GE structures protected them against disruption during in vitro digestion. Accordingly, Si appears to slow down fat digestion, as reflected by higher triacylglycerides content after GID (15 and 22% vs. 10 and 18% in GEs without Si) and could become a potential candidate for use in the development of healthier meat products.
Collapse
Affiliation(s)
- Susana Cofrades
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain;
| | - Marina Hernández-Martín
- Physiology Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (M.H.-M.); (M.E.L.-O.)
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
| | - Arancha Saiz
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain;
| | - M. Elvira López-Oliva
- Physiology Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (M.H.-M.); (M.E.L.-O.)
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
| | - María Dolores Álvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain;
| |
Collapse
|
11
|
Liu Y, Cao K, Li T, Mu D, Zhang N, Wang Y, Wu R, Wu J. Encapsulation of docosahexaenoic acid (DHA) using self-assembling food-derived proteins for efficient biological functions. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Microencapsulated Healthy Oil Mixtures to Enhance the Quality of Foal Pâtés. Foods 2022; 11:foods11213342. [PMID: 36359954 PMCID: PMC9655113 DOI: 10.3390/foods11213342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the use of microencapsulated oil mixtures as partial animal fat replacers and their effects on the physicochemical, nutritional and sensory qualities of foal pâtés. Three different batches were manufactured: a control (CON) formulation, with foal dorsal subcutaneous fat (30 g/100 g), and treatments 1 and 2 (T1 and T2), with 50% of the animal fat replaced by microcapsules containing algal oil mixed with walnut oil (T1) or pistachio oil (T2). The reformulated samples presented significant (p < 0.001) diminutions of fat contents, which achieved reductions of 34.22% (“reduced fat content”) and 28.17% in the T1 and T2 samples, respectively, and the lipid reformulation did not affect (p > 0.05) the texture or lipid oxidation of the samples. Furthermore, both microencapsulated oil mixtures significantly (p < 0.001) reduced (11−15%) saturated fatty acid (SFA) concentrations and increased (p < 0.001) mono- (T2) and polyunsaturated (T1) fatty acid contents (8% and 68%, respectively), contributing to the obtainment of nutritional indices in line with health recommendations. Additionally, consumer acceptability did not display significant (p > 0.05) differences among samples. Hence, the outcomes indicated that the incorporation of these microencapsulated oil mixtures as partial animal fat replacers, especially the T1 mixture, represents a promising strategy to obtain healthier foal pâtés, without compromising consumer approval.
Collapse
|
13
|
Sapatinha M, Afonso C, Cardoso C, Pires C, Mendes R, Montero M, Gómez‐Guillén M, Bandarra N. Lipid Nutritional Value and Bioaccessibility of Novel
Ready‐To‐Eat
Seafood Products with Encapsulated Bioactives. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Sapatinha
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6 1495‐165 Algés Portugal
| | - C. Afonso
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6 1495‐165 Algés Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research University of Porto, Rua dos Bragas 289 4050‐123 Porto Portugal
| | - C. Cardoso
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6 1495‐165 Algés Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research University of Porto, Rua dos Bragas 289 4050‐123 Porto Portugal
| | - C. Pires
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6 1495‐165 Algés Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research University of Porto, Rua dos Bragas 289 4050‐123 Porto Portugal
| | - R. Mendes
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6 1495‐165 Algés Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research University of Porto, Rua dos Bragas 289 4050‐123 Porto Portugal
| | - M.P. Montero
- Department of Meat and Fish Products Institute of Food Science, Technology and Nutrition (ICTAN‐CSIC) 28040 Madrid Spain
| | - M.C. Gómez‐Guillén
- Department of Meat and Fish Products Institute of Food Science, Technology and Nutrition (ICTAN‐CSIC) 28040 Madrid Spain
| | - N.M. Bandarra
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6 1495‐165 Algés Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research University of Porto, Rua dos Bragas 289 4050‐123 Porto Portugal
| |
Collapse
|
14
|
Zhang S, Li X, Yan X, Julian McClements D, Ma C, Liu X, Liu F. Ultrasound-assisted preparation of lactoferrin-EGCG conjugates and their application in forming and stabilizing algae oil emulsions. ULTRASONICS SONOCHEMISTRY 2022; 89:106110. [PMID: 35961190 PMCID: PMC9382344 DOI: 10.1016/j.ultsonch.2022.106110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 05/09/2023]
Abstract
The aim of this study was to prepare lactoferrin-epigallocatechin-3-gallate (LF-EGCG) conjugates and to determine their ability to protect emulsified algal oil against aggregation and oxidation. LF-EGCG conjugates were formed using an ultrasound-assisted alkaline treatment. The ultrasonic treatment significantly improved the grafting efficiency of LF and EGCG and shortened the reaction time from 24 h to 40 min. Fourier transform infrared spectroscopy and circular dichroism spectroscopy analyses showed that the covalent/non-covalent complexes could be formed between LF and EGCG, with the CO and CN groups playing an important role. The formation of the conjugates reduced the α-helix content and increased the random coil content of the LF. Moreover, the antioxidant activity of LF was significantly enhanced after conjugation with EGCG. LF-EGCG conjugates as emulsifiers were better at inhibiting oil droplet aggregation and oxidation than LF alone. This study demonstrates that ultrasound-assisted formation of protein-polyphenol conjugates can enhance the functional properties of the proteins, thereby extending their application as functional ingredients in nutritionally fortified foods.
Collapse
Affiliation(s)
- Sairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xueqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
15
|
Chen X, Chen Y, Liu Y, Zou L, McClements DJ, Liu W. A review of recent progress in improving the bioavailability of nutraceutical-loaded emulsions after oral intake. Compr Rev Food Sci Food Saf 2022; 21:3963-4001. [PMID: 35912644 DOI: 10.1111/1541-4337.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Increasing awareness of the health benefits of specific constituents in fruits, vegetables, cereals, and other whole foods has sparked a broader interest in the potential health benefits of nutraceuticals. Many nutraceuticals are hydrophobic substances, which means they must be encapsulated in colloidal delivery systems. Oil-in-water emulsions are one of the most widely used delivery systems for improving the bioavailability and bioactivity of these nutraceuticals. The composition and structure of emulsions can be designed to improve the water dispersibility, physicochemical stability, and bioavailability of the encapsulated nutraceuticals. The nature of the emulsion used influences the interfacial area and properties of the nutraceutical-loaded oil droplets in the gastrointestinal tract, which influences their digestion, as well as the bioaccessibility, metabolism, and absorption of the nutraceuticals. In this article, we review recent in vitro and in vivo studies on the utilization of emulsions to improve the bioavailability of nutraceuticals. The findings from this review should facilitate the design of more efficacious nutraceutical-loaded emulsions with increased bioactivity.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Yan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yikun Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Du Q, Zhou L, Li M, Lyu F, Liu J, Ding Y. Omega‐3 polyunsaturated fatty acid encapsulation system: Physical and oxidative stability, and medical applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qiwei Du
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Linhui Zhou
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Minghui Li
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Fei Lyu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Jianhua Liu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Yuting Ding
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| |
Collapse
|
17
|
Hu M, Xie F, Zhang S, Qi B, Li Y. Effect of nanoemulsion particle size on the bioavailability and bioactivity of perilla oil in rats. J Food Sci 2020; 86:206-214. [PMID: 33295031 DOI: 10.1111/1750-3841.15537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the bioavailability and bioactivity of perilla (Perilla frutescens) oil nanoemulsions prepared at different homogenization pressures by measuring the weight, fatty acid profile, and antioxidant and anti-inflammatory properties in rats. The high-pressure homogenization significantly reduced the particle size of perilla oil nanoemulsions and enhanced their stability, and the minimum particle size was 293.87 ± 6.55 nm at 120 MPa. There was an increase in the weight and fatty acid levels in the plasma and liver of test group rats. The highest glutathione (GSH) and the lowest malondialdehyde (MDA) levels of 18.76 ± 10.51 mg GSH/g prot and 20.27 ± 2.46 nmol/mg prot, respectively, were recorded in rats administrated perilla oil nanoemulsions prepared at 120 MPa. However, there was no significant difference in superoxide dismutase activity (SOD) between the groups. The interferon-gamma (IL-γ), interleukin-1 beta (IL-1β), IL-6 (interleukin-6), and IL-8 (interleukin-8) levels in the test groups were lower than those in the blank and control groups at 8 hr after lipopolysaccharide injection. The IL-1β, IL-6, and IL-8 levels were 49.52 ± 14.06, 90.13 ± 6.04, and 419.71 ± 32.03 ng/L, respectively, in rats treated with perilla oil nanoemulsions prepared at 120 MPa. Both perilla oil and its nanoemulsions decreased estradiol levels and damaged the ovaries. Overall, our findings show that the test nanoemulsions enhanced the bioavailability of perilla oil, which resulted in enhanced antioxidant and anti-inflammatory responses; thus, we provide a new approach to deliver perilla oil. PRACTICAL APPLICATION: Nanoemulsions can be used to deliver drugs and bioactive compounds, and perilla oil nanoemulsions can be used in healthcare products and beverage industries.
Collapse
Affiliation(s)
- Miao Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.,Heilongjiang Institute of Green Food Science, Harbin, 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.,Heilongjiang Institute of Green Food Science, Harbin, 150030, China
| |
Collapse
|
18
|
Paglarini CDS, Vidal VAS, Martini S, Cunha RL, Pollonio MAR. Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Crit Rev Food Sci Nutr 2020; 62:640-655. [PMID: 33000627 DOI: 10.1080/10408398.2020.1825322] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent consumers' concerns about diet and its health benefits has triggered a reduction in consumption of foods rich in sugar, fat, salt, and chemical additives. As a result, an expanded market for functional foods has arisen. In particular, high-fat foods normally composed by saturated fatty acids, cholesterol and trans-fatty acids have been reformulated to be healthier. The primary source of saturated fat ingested by humans includes meats and their by-products that have animal fat as lipid source. The reformulation of these products therefore represents an important strategy to make them healthier for human consumption. Substituting solid fat by unsaturated oils usually affects the texture of the products, and therefore, new structuring methods must be developed to provide vegetable oils a similar characteristic to solid fats and improve their functional and health-related properties. Among these structural models, gelled emulsions (GE) show great potential to be used as healthier lipid ingredients in low-calorie and reduced-fat products, including healthier meat products. This review addresses the GE properties to be used as structuring agent, their in vitro bioaccessibility in meat products and effect on technological, sensorial, microstructural and microbiological characteristics.
Collapse
Affiliation(s)
- Camila de Souza Paglarini
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Vitor Andre Silva Vidal
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Silvana Martini
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, USA
| | - Rosiane Lopes Cunha
- Department of Food Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
19
|
Fu J, Song L, Liu Y, Bai C, Zhou D, Zhu B, Wang T. Improving oxidative stability and release behavior of docosahexaenoic acid algae oil by microencapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2774-2781. [PMID: 32020617 DOI: 10.1002/jsfa.10309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Spray-dried docosahexaenoic acid algae oil (DHA AO) microcapsules were prepared using whey protein isolate and glucose syrup (WPI + GS), or sodium starch octenylsuccinate and glucose syrup (SSOS + GS), or whey protein isolate and lactose (WPI + L). The effect of the formulations on encapsulation properties, oxidative protection and in vitro oil release pattern of the resulting microencapsulates was investigated. RESULTS A high encapsulation efficiency of over 98% of DHA AO was obtained for microcapsules with all three wall materials. Among the wall materials, SSOS + GS exhibited a better micro-particulation ability reflected by more uniform size and smoother surface of the formed microcapsules and no agglomerates. DHA AO microcapsules with all the wall materials showed good protection of the oil from oxidation during storage with an increasing order of WPI + GS, SSOS + GS and WPI + L. Moreover, microencapsulation significantly increased the release of DHA AO in the intestinal phase of the in vitro digestion process with an increasing order of SSOS + GS, WPI + GS and WPI + L, indicating the increased stability of the oil in the highly acidic gastric environment and the enhanced lipid digestibility in the small intestine. CONCLUSIONS The results suggest that it is possible to transform a highly oxidizable liquid functional food ingredient such as DHA AO into a stable and easy-to-handle solid powder through spray drying with properly selected wall materials. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Fu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Liang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Yunhang Liu
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Changjun Bai
- Qingdao Seawit Life Science Co. Ltd, Qingdao, PR China
| | | | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Tong Wang
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|