1
|
Cui D, Ling M, Huang Y, Duan C, Lan Y. Micro‑oxygenation in red wines: Current status and future perspective. Food Chem 2025; 464:141678. [PMID: 39454438 DOI: 10.1016/j.foodchem.2024.141678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Micro‑oxygenation (MOX) is the technology providing a slow and continuous oxidation reaction in the whole winemaking process to improve wine quality. However, traditional methods of oxygen management struggle to achieve a precise control over oxygen at critical process points, failing to meet the personalized and diverse production demands of wine. In this paper, an overview of three application stages of MOX, and the detailed dosage and duration at each stage were summarized. In addition, the application prospect of the new MOX application facility in wine production was proposed. Compared to passive MOX, active MOX could allow a more precise control of oxygen. The innovation of MOX equipment based on active MOX technique will be an inspiring interest in the research of winemaking. The integration and development of precise MOX will achieve the targeted control of wine quality and the creation of distinctive characteristics of wine style.
Collapse
Affiliation(s)
- Dongsheng Cui
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Mengqi Ling
- College of Food Science and Engineering, "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Yongce Huang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
2
|
Wang Q, Cui X, Wang J, Chang H, Wang J, Zhang A, Zhou Y, Xu Z, Dai L, Han G. Impact of Condensed Tannin and Sulfur Dioxide Addition on Acetaldehyde Accumulation and Anthocyanin Profile of Vitis vinifera L. Cv. Cabernet Sauvignon Wines During Alcoholic Fermentation. Molecules 2024; 29:5238. [PMID: 39598628 PMCID: PMC11596415 DOI: 10.3390/molecules29225238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Acetaldehyde is a key carbonyl by-product during red wine alcoholic fermentation; it is reactive and takes part in certain reactions involving anthocyanin. The aim of this study was to investigate the influence of SO2 and condensed tannin on the acetaldehyde accumulation of Saccharomyces cerevisiae (S. cerevisiae) during alcoholic fermentation and the ripple effect on wine anthocyanin. In this study, six sets of Cabernet Sauvignon alcoholic fermentation with two different sulfur levels (HS and LS) were carried out by adding exogenous condensed tannins before fermentation (T0) in the acetaldehyde rise period (TA) of S. cerevisiae and at the end of fermentation (TE), separately. The acetaldehyde evolution was identified during fermentation and anthocyanin was analyzed comparatively. The results showed that HS treatment slowed down the degradation of acetaldehyde, while tannins accelerated the degradation of acetaldehyde during alcoholic fermentation, especially TA wines. Furthermore, TA wines possessed a unique anthocyanin profile after fermentation regardless of SO2 level compared with other wines. These results suggest that acetaldehyde-mediated anthocyanin polymerization most likely occurs timely at the acetaldehyde production phase of S. cerevisiae during alcoholic fermentation, and managing tannin addition time during production could be used to regulate the anthocyanin profile.
Collapse
Affiliation(s)
- Qinglong Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| | - Xiaoqian Cui
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| | - Jiaqi Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| | - Heqiang Chang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| | - Junzhe Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| | - Ang Zhang
- Technology Center of Qinhuangdao Customs, Qinhuangdao 066004, China;
| | - Yang Zhou
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
- Wei Long Grape Wine Co., Ltd., Yantai 265704, China
| | - Zhiyong Xu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
- Wei Long Grape Wine Co., Ltd., Yantai 265704, China
| | - Lingmin Dai
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| | - Guomin Han
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| |
Collapse
|
3
|
Boccardi V, Tagliafico L, Persia A, Page E, Ottaviani S, Cremonini AL, Borgarelli C, Pisciotta L, Mecocci P, Nencioni A, Monacelli F. The Potential Effects of Red Wine and Its Components on Neurocognitive Disorders: A Narrative Review. Nutrients 2024; 16:3431. [PMID: 39458427 PMCID: PMC11510231 DOI: 10.3390/nu16203431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The aging population is associated with a net increase in the incidence and prevalence of chronic-degenerative diseases, particularly neurocognitive disorders. Therefore, the identification of preventative strategies to restrain the burden of such chronic conditions is of key relevance. Red wine and its components have accumulated evidence regarding their positive effects in terms of neurological pathologies associated with neurocognitive symptoms. METHODS Based on this background, the present narrative review aims to summarize the state-of-the-art evidence on the effects of red wine and its components on neurocognitive disorders in both preclinical and clinical settings. RESULTS The main findings highlight a protective effect of wine polyphenols present in red wine on dementia in different preclinical models of cognitive decline. The current translational clinical evidence remains uncertain, especially considering the risk-to-benefit ratio of alcohol consumption on brain health. CONCLUSIONS Given the overall health risks associated with red wine consumption and consistent with the prevailing guidelines in the literature, there is insufficient evidence to support light-to-moderate red wine consumption as an effective strategy for preventing these diseases. However, the largely preclinical findings on polyphenols derived from red wine remain of significant interest in this context.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Elena Page
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ottaviani
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | | | - Livia Pisciotta
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Patrizia Mecocci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
4
|
Noviello M, Antonino C, Gambacorta G, Paradiso VM, Caponio F. Use of vine-shoots stilbene extract to the reduction of SO 2 in red and rosé Italian wine: Effect on phenolic, volatile, and sensory profiles. Heliyon 2024; 10:e34310. [PMID: 39113959 PMCID: PMC11304030 DOI: 10.1016/j.heliyon.2024.e34310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Sulfur dioxide (SO2) is one of the most used additives in wine industry for its antioxidant and antimicrobial activity. However, due to health concerns, consumers' demand of wines with either reduced or totally replaced SO2 has increased. This study aimed to assess the effect of partial and total replacement of SO2 with a vine-shoots extract rich in stilbenes in rosé (cv. Sangiovese) and red (cv. Negramaro) wines respectively. Color as well as phenolic, volatile, and sensory profiles of wines were evaluated at bottling and during storage. The results showed that the vine-shoots extract increased the levels of trans-resveratrol, catechin, and gallic acid in wines. Moreover, the positive correlation of procyanidin dimers in red wine suggested an increase of the polymerization reactions. The amount of added extract probably provided lower antimicrobial protection compared to SO2, as indicated by the higher levels of ethyl phenol. The decrease of individual anthocyanins and oxidation aldehydes observed in wines with SO2 replacement and the higher levels of caftaric acid in the rosé wine with the extract suggested a shift of the oxidative protection, with a lower protection towards anthocyanin degradation and higher protection towards carbonyl formation and oxidation of readily oxidizable phenolic acids.
Collapse
Affiliation(s)
- Mirella Noviello
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola, 165/A, 70126, Bari, Italy
| | - Claudia Antonino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola, 165/A, 70126, Bari, Italy
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola, 165/A, 70126, Bari, Italy
| | - Vito Michele Paradiso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Monteroni, 73100, Lecce, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola, 165/A, 70126, Bari, Italy
| |
Collapse
|
5
|
Wu L, Zhang Y, Prejanò M, Marino T, Russo N, Tao Y, Li Y. Gallic acid improves color quality and stability of red wine via physico-chemical interaction and chemical transformation as revealed by thermodynamics, real wine dynamics and benchmark quantum mechanical calculations. Food Res Int 2024; 188:114510. [PMID: 38823887 DOI: 10.1016/j.foodres.2024.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The aim of this study was to explore the copigmentation effect of gallic acid on red wine color and to dissect its mechanism at the molecular level. Three-dimensional studies, e.g., in model wine, in real wine and in silico, and multiple indicators, e.g., color, spectrum, thermodynamics and phenolic dynamics, were employed. The results showed that gallic acid significantly enhanced the color quality and stability of red wine. Physico-chemical interactions and chemical transformations should be the most likely mechanism, and physico-chemical interactions are also a prerequisite for chemical transformations. QM calculations of the physico-chemical interactions proved that the binding between gallic acid and malvidin-3-O-glucoside is a spontaneous exothermic reaction driven by hydrogen bonding and dispersion forces. The sugar moiety of malvidin-3-O-glucoside and the phenolic hydroxyl groups of gallic acid affect the formation of hydrogen bonds, while the dispersion interaction was related to the stacking of the molecular skeleton.
Collapse
Affiliation(s)
- Lulu Wu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yu Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, CS, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, CS, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, CS, Italy
| | - Yongsheng Tao
- College of Enology, Northwest A&F University, Yangling 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Minning, Ningxia 750104, China.
| | - Yunkui Li
- College of Enology, Northwest A&F University, Yangling 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Minning, Ningxia 750104, China.
| |
Collapse
|
6
|
Zhou W, Ding W, Wu X, Sun J, Bai W. Microbial synthesis of anthocyanins and pyranoanthocyanins: current bottlenecks and potential solutions. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38935054 DOI: 10.1080/10408398.2024.2369703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Anthocyanins (ACNs) are secondary metabolites found in plants. Due to their impressive biological activities, ACNs have gained significant popularity and extensive application within the food, pharmaceutical, and nutraceutical industries. A derivative of ACNs: pyranoanthocyanins (PACNs) possesses more stable properties and interesting biological activities. However, conventional methods for the production of ACNs, including chemical synthesis and plant extraction, involve organic solvents. Microbial synthesis of ACNs from renewable biomass, such as amino acids or flavonoids, is considered a sustainable and environmentally friendly method for large-scale production of ACNs. Recently, the construction of microbial cell factories (MCFs) for the efficient biosynthesis of ACNs and PACNs has attracted much attention. In this review, we summarize the cases of microbial synthesis of ACNs, and analyze the bottlenecks in reconstructing the metabolic pathways for synthesizing PACNs in microorganisms. Consequently, there is an urgent need to investigate the mechanisms behind the development of MCFs for PACNs synthesis. Such research also holds significant promise for advancing the production of food pigments. Meanwhile, we propose potential solutions to the bottleneck problem based on metabolic engineering and enzyme engineering. Finally, the development prospects of natural food and biotechnology are discussed.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Weiqiu Ding
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, Guangdong, China
| | - Xingyuan Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Jianxia Sun
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangdong, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| |
Collapse
|
7
|
Liu X, Bai Y, Chen Q, Wang X, Duan C, Hu G, Wang J, Bai L, Du J, Han F, Zhang Y. Effect of ultrasonic treatment during fermentation on the quality of fortified sweet wine. ULTRASONICS SONOCHEMISTRY 2024; 105:106872. [PMID: 38599128 PMCID: PMC11011216 DOI: 10.1016/j.ultsonch.2024.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
The present study aimed to investigate the potential of ultrasonic treatment during fermentation for enhancing the quality of fortified wines with varying time and power settings. Chemical analysis and sensory evaluation were conducted to assess the impact of ultrasonic treatment on wine quality. Results showed that ultrasonic treatment could increase total anthocyanin and total phenol content, reduce anthocyanin degradation rate, and improve color stability. Moreover, ethyl carbamate content was lower in the ultrasonic group after aging compared to non-ultrasonic group. A combination of 200 W for 20 min resulted in higher sensory scores and more coordinated taste, while a combination of 400 W for 40 min produced higher levels of volatile compounds (21860.12 μg/L) leading to a richer and more elegant aroma. Therefore, ultrasound can be used as a potential technology to improve the quality of wine.
Collapse
Affiliation(s)
- Xinyang Liu
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; Institute of Agro-product Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yangyang Bai
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiaomin Chen
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinquan Wang
- Institute of Agro-product Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guixian Hu
- Institute of Agro-product Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junhong Wang
- Institute of Agro-product Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liping Bai
- Institute of Agro-product Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Juan Du
- Xinjiang Uygur Autonomous Region Grape and Melon Research Institute, Shanshan 838200, Xinjiang, China
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, Shaanxi, China; Heyang Experimental Demonstration Station, Northwest A&F University, Weinan 715300, Shaanxi, China.
| | - Yu Zhang
- Institute of Agro-product Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; Key Laboratory of Agricultural Product Information Traceability, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China; Zhejiang Provincial Key Laboratory of Food Safety, Hangzhou, China.
| |
Collapse
|
8
|
Li X, Yuan K, Zhang Y, Liu C, Cai D, Sun J, Lai C, Bai W. The promising stability of carboxylpyranocyanidin-3-O-glucoside during food processing and simulated digestion and its bioavailability research. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2372-2382. [PMID: 37950695 DOI: 10.1002/jsfa.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Pyranoanthocyanins are stable anthocyanin derivatives. Carboxylpyranoanthocyanin is one of the simplest pyranoanthocyanin, among which the production of carboxylpyranocyanidin-3-O-glucoside (crboxyl-pycy-3-gluc) is most feasible as a result of the abundance of its reactant, cyanidin-3-O-glucoside (Cy-3-gluc). RESULTS In the present study, carboxyl-pycy-3-gluc was synthesized and its stability during processing and after ingestion as well as its bioavailability in vivo were comprehensively evaluated. Our results indicated that the color of carboxyl-pycy-3-gluc remained more stable compared to Cy-3-gluc when facing the large-span pH variation. The high retention of anthocyanin symbolized the superb stability under thermal processing, sulfur dioxide bleaching and ultrasonic treatment of carboxyl-pycy-3-gluc. Because of the stability under the alkaline condition, carboxyl-pycy-3-gluc is more stable after oral-gastrointestinal digestion. After in vitro gut microbiota fermentation, the retention of carboxyl-pycy-3-gluc was significantly higher than that of Cy-3-gluc. The larger molecular size made absorption of carboxyl-pycy-3-gluc into blood more difficult than its precursor. CONCLUSION The present study demonstrated the promising stability of carboxyl-pycy-3-gluc during food processing and after digestion, confirming the potential of carboxyl-pycy-3-gluc as a colorant. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xusheng Li
- The First Affiliated Hospital of Jinan University and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Kailan Yuan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Chuqi Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Caiyong Lai
- The First Affiliated Hospital of Jinan University and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Carrasco-Quiroz M, Martínez-Gil AM, Nevares I, del Alamo-Sanza M. New System for Simultaneous Measurement of Oxygen Consumption and Changes in Wine Color. Molecules 2023; 29:231. [PMID: 38202815 PMCID: PMC10780306 DOI: 10.3390/molecules29010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The design, construction and validation of a device for the accurate measurement of the dissolved oxygen content in wine and simultaneously the variation of its spectral fingerprint is presented. The novelty of this system is due to two innovative approaches. First, robustness in measurements is obtained by using cuvettes designed to simultaneously measure the dissolved oxygen and color. Secondly, automatic monitoring is performed to ensure that measurements are always taken at the same cuvette position. The fine-tuning of the device with the study of white and red wines makes it possible, on the one hand, to establish the appropriate measurement conditions and, on the other hand, to determine the amount of oxygen required to cause specific changes in the wine spectrum, information that could not be obtained until now. The preliminary results are very interesting, presenting precise data on the amount of oxygen consumed by the wine and the variations in its visible spectrum, thus reflecting the modification of the responsible phenolic compounds. This information is of great interest, since it helps to optimize the handling of the wine and, if necessary, to moderate the uptake of oxygen in each type of wine to ensure the maintenance of the color during the winemaking and conservation processes of each type of wine. The results of the experiments indicate that this new instrument is feasible and accurate for detecting oxygen changes during wine production.
Collapse
Affiliation(s)
- Marioli Carrasco-Quiroz
- Department of Analytical Chemistry, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain; (M.C.-Q.); (A.M.M.-G.)
| | - Ana María Martínez-Gil
- Department of Analytical Chemistry, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain; (M.C.-Q.); (A.M.M.-G.)
| | - Ignacio Nevares
- Department of Agroforestry Engineering, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain
| | - Maria del Alamo-Sanza
- Department of Analytical Chemistry, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain; (M.C.-Q.); (A.M.M.-G.)
| |
Collapse
|
10
|
Gao Y, Wang X, Ai J, Huang W, Zhan J, You Y. Formation of vinylphenolic pyranoanthocyanins by selected indigenous yeasts displaying high hydroxycinnamate decarboxylase activity during mulberry wine fermentation and aging. Food Microbiol 2023; 113:104272. [PMID: 37098424 DOI: 10.1016/j.fm.2023.104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The color of mulberry wine is difficult to maintain since the main chromogenic substances, anthocyanins, are severely degraded during fermentation and aging. This study selected Saccharomyces cerevisiae I34 and Wickerhamomyces anomalus D6, both displaying high hydroxycinnamate decarboxylase (HCDC) activity (78.49% and 78.71%), to enhance the formation of stable vinylphenolic pyranoanthocyanins (VPAs) pigments during mulberry wine fermentation. The HCDC activity of 84 different strains from eight regions in China was primarily screened via the deep well plate micro fermentation method, after which the tolerance and brewing characteristics were evaluated via simulated mulberry juice. The two selected strains and a commercial Saccharomyces cerevisiae were then inoculated individually or sequentially into the fresh mulberry juice, while the anthocyanin precursors and VPAs were identified and quantified via UHPLC-ESI/MS. The results showed that the HCDC-active strains facilitated the synthesis of stable pigments, cyanidin-3-O-glucoside-4-vinylcatechol (VPC3G), and cyanidin-3-O-rutinoside-4-vinylcatechol (VPC3R), highlighting its potential for enhancing color stability.
Collapse
|
11
|
Carrasco-Quiroz M, del Alamo-Sanza M, Martínez-Gil AM, Sánchez-Gómez R, Martínez-Martínez V, Nevares I. Influence of Oxygen Management on Color and Phenolics of Red Wines. Molecules 2023; 28:459. [PMID: 36615650 PMCID: PMC9824722 DOI: 10.3390/molecules28010459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Winemaking involves contact at different stages with atmospheric oxygen, the consumption of which determines its final properties. The chemical analysis of red wines subjected to consecutive cycles of air saturation has been extensively researched; however, the capacity to consume different doses of oxygen before bottling is an aspect that has been little studied. In this work, the effect of saturation of different levels of oxygen on the final characteristics of different wines made from Tempranillo and Garnacha grape extracts was studied. For this purpose, the wines were subjected to controlled oxygen saturation levels to simulate their possible oxygenation before bottling. The only difference was the phenolic composition of grape extracts that were reconstituted under the same conditions to avoid the interferences inherent to the fermentation process and the additives added in the winery. The kinetics of oxygen consumption was then evaluated and its effect on the color, antioxidant capacity, and phenols of three different wines was analyzed. This work shows the relationship between the oxidation state of wine and changes in its chemical composition. In addition, it provides insight into the effect of oxygen consumption before bottling on the properties of wines subjected to high and single doses of oxygen.
Collapse
Affiliation(s)
| | - Maria del Alamo-Sanza
- Department of Analytical Chemistry, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain
| | - Ana María Martínez-Gil
- Department of Analytical Chemistry, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain
| | - Rosario Sánchez-Gómez
- Department of Analytical Chemistry, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain
| | - Víctor Martínez-Martínez
- Department of Agroforestry Engineering, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain
- Faculty of Science and Technology, Isabel I University, 09003 Burgos, Spain
| | - Ignacio Nevares
- Department of Agroforestry Engineering, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain
| |
Collapse
|
12
|
Acetaldehyde accumulation during wine micro oxygenation: The influence of microbial metabolism. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Dai L, Sun Y, Liu M, Cui X, Wang J, Li J, Han G. Influence of Oxygen Management during the Post-Fermentation Stage on Acetaldehyde, Color, and Phenolics of Vitis vinifera L. Cv. Cabernet Sauvignon Wine. Molecules 2022; 27:6692. [PMID: 36235228 PMCID: PMC9572646 DOI: 10.3390/molecules27196692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Oxygen exposure is unavoidable and the impact of its management during the post-fermentation stage (PFS) on dry red wine is poorly investigated. This study was dedicated to the variation of acetaldehyde, color and phenolics of Cabernet Sauvignon dry red wine during five discontinuous oxidation cycles of four levels of controlled oxygen supply, which were carried out to simulate probable oxidation during the PFS. Free SO2 disappeared after the first, second and third oxidation cycles in wines with high, medium and low levels of oxygen exposure severally, but subsequent oxygen exposure below or equal to 2 mg O2/L per cycle had little effect while 3-3.9 mg O2/L per cycle dramatically facilitated acetaldehyde accumulation, which was accompanied by an enormous variation in color and pigments, especially when total oxygen consumption was above 10 mg/L. The utilization of clustered heatmap and partial least square regression demonstrated the feasibility of characterization of wine oxidation degree using the chemical parameters measured by UV-spectrophotometry. Oxygen exposure during the PFS should be emphatically controlled, and chemical indexes determined by the UV-spectrophotometric method can be used for a scientific and effective description of wine oxidation degree.
Collapse
Affiliation(s)
- Lingmin Dai
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yuhang Sun
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Muqing Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoqian Cui
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiaqi Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiming Li
- Yantai Changyu Group Corporation Ltd., Yantai 264001, China
| | - Guomin Han
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
14
|
Wang Z, Zhang L, Li Y, Liu Q, Chunlong Y. Non-acylated and acylated anthocynins in red wines of different ages: Color contribution and Evaluation. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Kumar L, Tian B, Harrison R. Interactions of Vitis vinifera L. cv. Pinot Noir grape anthocyanins with seed proanthocyanidins and their effect on wine color and phenolic composition. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Zhang XK, Zhao X, Ying S, Duan CQ. The formation mechanism of pinotin A in model wine: Experimental and theoretical investigation. Food Chem 2022; 380:132196. [DOI: 10.1016/j.foodchem.2022.132196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/28/2021] [Accepted: 01/16/2022] [Indexed: 11/15/2022]
|
17
|
Zhao X, Zhang N, He F, Duan C. Reactivity comparison of three malvidin-type anthocyanins forming derived pigments in model wine solutions. Food Chem 2022; 384:132534. [PMID: 35219237 DOI: 10.1016/j.foodchem.2022.132534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 01/04/2023]
Abstract
Malvidin-3-O-glucoside (MvG), malvidin-3-O-(6-O-acetyl)-glucoside (MvAG), and malvidin-3,5-O-diglucoside (MvDG) are three representative malvidin-type anthocyanins in red wine. In this study, the influence of structural differences on the formation efficiency of two types of derived pigments ((-)-epicatechin-ethyl-anthocyanins and pyranoanthocyanins) was investigated in model solutions using UHPLC-MS. The results showed that the yields of MvAG were higher than those of MvG to form both types of derived pigments, and the formation rate of pyranoanthocyanin was also relatively higher. In contrast, acetylation slowed the formation of (-)-epicatechin-ethyl-anthocyanins, indicating that the rate of covalent reactions may be linked to the affinity of (-)-epicatechin to copigment with anthocyanins. The condensation rate of MvDG with (-)-epicatechin, mediated by acetaldehyde, was much lower than that of the two monoglucosidic anthocyanins and also exhibited lower yields. In addition, pyranoanthocyanin was not generated from MvDG due to the absence of a free hydroxyl group at the C5 position.
Collapse
Affiliation(s)
- Xu Zhao
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ning Zhang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
18
|
Chemical composition of jabuticaba (Plinia jaboticaba) liquors produced from cachaça and cereal alcohol. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Zhao X, He F, Zhang XK, Shi Y, Duan CQ. Impact of three phenolic copigments on the stability and color evolution of five basic anthocyanins in model wine systems. Food Chem 2021; 375:131670. [PMID: 34848083 DOI: 10.1016/j.foodchem.2021.131670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/31/2021] [Accepted: 11/21/2021] [Indexed: 11/26/2022]
Abstract
Phenolic copigments have important influence on red wine color. In this study, UV-visible spectrophotometer and UHPLC-Q-TOF-MS were combined to investigate the effects of three types of phenolic copigments (gallic acid, (-)-epicatechin, and quercetin-3-O-glucoside) on the stability and color properties of five common 3-O-monoglucosidic anthocyanins in model wine solutions. Results showed low concentrations (0.5 mM) of gallic acid and (-)-epicatechin protected anthocyanins from degradation, whereas high concentrations (8 mM) of them had the opposite effect. Quercetin-3-O-glucoside always improved the stability of anthocyanins despite its additive amount (0.1 mM or 0.4 mM). Even small quantity of (-)-epicatechin led to obvious yellow hue into the solution, and xanthylium derivatives generated from (-)-epicatechin were detected. Antagonistic effect among the three copigments was observed, probably as a result of competition of intermolecular copigmentation. Additionally, the stability of anthocyanins was significantly influenced by their structures: cyanidin-3-O-glucoside, peonidin-3-O-glucoside, and malvidin-3-O-glucoside were more stable than delphinidin-3-O-glucoside and petunidin-3-O-glucoside.
Collapse
Affiliation(s)
- Xu Zhao
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xin-Ke Zhang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
20
|
Determination of the age of dry red wine by multivariate techniques using color parameters and pigments. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Catania A, Lerno L, Sari S, Fanzone M, Casassa F, Oberholster A. Impact of micro-oxygenation timing and rate of addition on color stabilization and chromatic characteristics of cabernet sauvignon wines. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Cave JR, Parker E, Lebrilla C, Waterhouse AL. Normal-phase chromatographic separation of pigmented wine tannin by nano-HPLC quadrupole time-of-flight tandem mass spectrometry and identification of candidate molecular features. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4699-4704. [PMID: 33491784 DOI: 10.1002/jsfa.11115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND As a wine ages, altered sensory properties lead to changes in perceived quality and value. Concurrent modifications of anthocyanin and tannin occur forming pigmented tannin, softening astringency and retaining persistent color. Wine tannin extracts of 1990 and 2010 vintages of Oakville Station Cabernet Sauvignon have been analyzed using normal-phase chromatography with tandem quadrupole time-of-flight mass spectrometry (QToF) to investigate the compositional differences in their pigmented tannin fractions. RESULTS The older wine demonstrates much greater structural diversity and a range of more polar compounds, while the younger wine contains fewer observed ion peaks. Several hundred molecular features are observable, and, as expected, there is progression to higher molecular weights after long aging. Between 7% and 16% of molecular features could be matched to a database of anticipated pigmented tannin compounds. Many signals had multiple possible isomeric identities, but fragmentation to resolve their identity was stymied by low sensitivity of the tandem mass spectrometric capability provided by QToF, so isomeric disambiguation is incomplete. CONCLUSIONS The chromatography displayed a high degree of resolution in aged wines, separating many of the known pigment types, including aldehyde bridged compounds, pyranoanthocyanins and direct condensation products among others, as well as resolving a great number of unknown compounds. Expanding our understanding of red wine pigments will lead to better wines as winemakers will be able to associate quality with particular wine pigment profiles once we can distinguish the relevant patterns in those pigments. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan R Cave
- Agricultural and Environmental Chemistry, University of California, Davis, CA, USA
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Evan Parker
- Department of Chemistry, University of California, Davis, CA, USA
| | - Carlito Lebrilla
- Department of Chemistry, University of California, Davis, CA, USA
| | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| |
Collapse
|
23
|
Influence of Berry Ripening Stages over Phenolics and Volatile Compounds in Aged Aglianico Wine. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The harvest time of grapes is a major determinant of berry composition and of the wine quality, and it is usually established through empirical testing of main biochemical parameters of the berry. In this work, we studied how the ripening stage of Aglianico grapes modulates key secondary metabolites of wines, phenolics and volatile compounds. Specifically, we analyzed and compared four berry ripening stages corresponding to total soluble solids of 18, 20, 22, and 25 °Brix and related aged wines. Wine color intensity, anthocyanins level and total trans-resveratrol (free + glycosidic form) increased with grape maturity degree. Wines obtained from late-harvested grapes significantly differed from the others for a higher content of aliphatic alcohols, esters, acetates, α-terpineol and benzyl alcohol. The content of glycosidic terpene compounds, such as nerol, geraniol and α-terpineol, was higher in wines obtained with grapes harvested at 25 °Brix compared to the earlier harvests. Our work indicated that the maturity of the grape is a determining factor in phenolic and volatile compounds of red Aglianico wines. Moreover, extending grape ripening to a sugar concentration higher than 22 °Brix improves the biochemical profile of aged wine in terms of aroma compounds and of phytochemicals with known health-related benefits.
Collapse
|
24
|
Coppola F, Picariello L, Forino M, Moio L, Gambuti A. Comparison of Three Accelerated Oxidation Tests Applied to Red Wines with Different Chemical Composition. Molecules 2021; 26:molecules26040815. [PMID: 33557306 PMCID: PMC7915871 DOI: 10.3390/molecules26040815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Three accelerated oxidation tests were proposed to simulate red wine oxidation thus providing information useful to correctly manage moderate oxygen exposure of wine during aging in regard to phenolic composition and wine color. Since the results of the tests have never been compared on wines with different initial composition, the aim of this study was to find a suitable method to simulate oxidation of any still red wine. Methods: Aglianico, Barbera, Gaglioppo, Magliocco, and Nerello wines were treated with (1) three cycles of air saturation, (2) the addition of hydrogen peroxide, and (3) the addition of acetaldehyde. Changes in chromatic characteristics and phenolic composition were determined by spectrophotometric and HPLC methods. Results: Important differences in the behavior of the different wines were detected: the highest formation of polymeric pigments was observed in Barbera and Aglianico wines. In contrast, Gaglioppo and Magliocco wines showed a lower variability before and after the oxidation probably due to the lower anthocyanin/tannin ratio. Among the accelerated oxidation tests applied, no significant differences in color parameters and phenolic composition were detected in samples treated with the addition of H2O2 and the air saturation method. Conclusion: The study demonstrated that H2O2 addition is a successful tool to predict the evolution of different phenolic compounds during the air saturation treatment of wines.
Collapse
|
25
|
Bottle Aging and Storage of Wines: A Review. Molecules 2021; 26:molecules26030713. [PMID: 33573099 PMCID: PMC7866556 DOI: 10.3390/molecules26030713] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Wine is perhaps the most ancient and popular alcoholic beverage worldwide. Winemaking practices involve careful vineyard management alongside controlled alcoholic fermentation and potential aging of the wine in barrels. Afterwards, the wine is placed in bottles and stored or distributed in retail. Yet, it is considered that wine achieves its optimum properties after a certain storage time in the bottle. The main outcome of bottle storage is a decrease of astringency and bitterness, improvement of aroma and a lighter and more stable color. This is due to a series of complex chemical changes of its components revolving around the minimized and controlled passage of oxygen into the bottle. For this matter, antioxidants like sulfur oxide are added to avoid excessive oxidation and consequent degradation of the wine. In the same sense, bottles must be closed with appropriate stoppers and stored in adequate, stable conditions, as the wine may develop unappealing color, aromas and flavors otherwise. In this review, features of bottle aging, relevance of stoppers, involved chemical reactions and storage conditions affecting wine quality will be addressed.
Collapse
|
26
|
Zhang XK, Li SY, Zhao X, Pan QH, Shi Y, Duan CQ. HPLC-MS/MS-based targeted metabolomic method for profiling of malvidin derivatives in dry red wines. Food Res Int 2020; 134:109226. [PMID: 32517914 DOI: 10.1016/j.foodres.2020.109226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 11/18/2022]
Abstract
Anthocyanin derivatives are critical components that impart color to aging red wine. In this study, we developed a targeted metabolomic method for the simultaneously profiling of the primary thirty-seven malvidin-derived anthocyanin derivatives in red wine, including various pyranoanthocyanins and flavanols-related condensation products. First, high-performance liquid chromatography (HPLC) tandem ion trap and triple-quadrupole (QqQ) mass spectrometry were used to construct the mass spectral and chromatographic database of the anthocyanin derivatives that were formed in a model wine solution. Next, the targeted profiling analysis of these compounds was achieved on a QqQ mass spectrometer in the multiple reaction monitoring mode (MRM). The method displayed excellent linearity (R2 0.9391-0.9998), sensitivity (0.221-0.604 μg/L of limit of detection (LOD) and 0.274-1.157 μg/L of limit of quantification (LOQ) equivalent to malvidin-3-O-glucoside (Mv-glc)), and repeatability (less than 10% and 15% for intra-day and inter-day relative standard deviation (RSD) respectively). Partial least squares discriminant analysis (PLS-DA) based on this method showed great discrimination over different vintage wines, thereby promising to be an effective tool in wine anthocyanin and aging related study.
Collapse
Affiliation(s)
- Xin-Ke Zhang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Si-Yu Li
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xu Zhao
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
27
|
Cave JR, Parker E, Lebrilla C, Waterhouse AL. Omics Forecasting: Predictive Calculations Permit the Rapid Interpretation of High-Resolution Mass Spectral Data from Complex Mixtures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13318-13326. [PMID: 31604012 DOI: 10.1021/acs.jafc.9b04384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For some complex mixtures, chromatographic techniques are insufficient to separate the large numbers of compounds present. In addition, these mixtures often contain compounds with similar or identical molecular masses and shared fragmentation transitions. Advancements in mass spectrometry have provided more and more detailed molecular profiles with significant increases in resolution. This has led to a capacity to distinguish a very large number of compounds in complex mixtures, providing overwhelming data sets. The approach of calculating molecular formulas from a mass list has become more and more problematic as the number of signals has increased exponentially, to the point that it has become impossible to manually interpret the thousands of mass signals. The current approach is to calculate a list of possible formulas that fall within a specific mass error of the observed signal. Then, one must look for possible structures that can be derived from each entry on the list of formulas. However, an alternative approach is to anticipate the possible structures of a particular set of compounds, such as red wine pigments, and then compare the ion signals against a predicted list. To that end, starting with known wine pigment types, we have generated a set of expected wine pigment variants based on known derivatives of condensed tannin oligomers, anthocyanins, and fermentation products. After the ability to distinguish compounds by mass spectrometry was accounted for, over 1 million results were generated consisting of known and anticipated wine pigments. A comparison with a small sample of wine phenolic fractions show a large number of matches, suggesting that this approach may be helpful.
Collapse
|