1
|
Dey M, Ayan B, Yurieva M, Unutmaz D, Ozbolat IT. Studying Tumor Angiogenesis and Cancer Invasion in a Three-Dimensional Vascularized Breast Cancer Micro-Environment. Adv Biol (Weinh) 2021; 5:e2100090. [PMID: 33857356 PMCID: PMC8574137 DOI: 10.1002/adbi.202100090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/28/2021] [Indexed: 12/19/2022]
Abstract
Metastatic breast cancer is one of the deadliest forms of malignancy, primarily driven by its characteristic micro-environment comprising cancer cells interacting with stromal components. These interactions induce genetic and metabolic alterations creating a conducive environment for tumor growth. In this study, a physiologically relevant 3D vascularized breast cancer micro-environment is developed comprising of metastatic MDA-MB-231 cells and human umbilical vein endothelial cells loaded in human dermal fibroblasts laden fibrin, representing the tumor stroma. The matrix, as well as stromal cell density, impacts the transcriptional profile of genes involved in tumor angiogenesis and cancer invasion, which are hallmarks of cancer. Cancer-specific canonical pathways and activated upstream regulators are also identified by the differential gene expression signatures of these composite cultures. Additionally, a tumor-associated vascular bed of capillaries is established exhibiting dilated vessel diameters, representative of in vivo tumor physiology. Further, employing aspiration-assisted bioprinting, cancer-endothelial crosstalk, in the form of collective angiogenesis of tumor spheroids bioprinted at close proximity, is identified. Overall, this bottom-up approach of tumor micro-environment fabrication provides an insight into the potential of in vitro tumor models and enables the identification of novel therapeutic targets as a preclinical drug screening platform.
Collapse
Affiliation(s)
- Madhuri Dey
- Department of Chemistry, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Bugra Ayan
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine and University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine and University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Deryugina E, Carré A, Ardi V, Muramatsu T, Schmidt J, Pham C, Quigley JP. Neutrophil Elastase Facilitates Tumor Cell Intravasation and Early Metastatic Events. iScience 2020; 23:101799. [PMID: 33299970 PMCID: PMC7702017 DOI: 10.1016/j.isci.2020.101799] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Functional roles of neutrophil elastase (NE) have not been examined in distinct steps of the metastatic cascade. NE, delivered to primary tumors as a purified enzyme or within intact neutrophils or neutrophil granule content, enhanced human tumor cell intravasation and subsequent dissemination via NE-mediated formation of dilated intratumoral vasculature. These effects depended on picomole range of NE activity, sensitive to its natural inhibitor, α1PI. In Elane-negative mice, the lack of NE decreased lung retention of human tumor cells in experimental metastasis. Furthermore, NE was essential for spontaneous metastasis of murine carcinoma cells in a syngeneic orthotopic model of oral cancer. NE also induced tumor cell survival and migration via Src/PI3K-dependent activation of Akt signaling, vital for tumor cell dissemination in vivo. Together, our findings implicate NE, a potent host enzyme specific for first-responding innate immune cells, as directly involved in early metastatic events and a potential target for therapeutic intervention. NE enhances human carcinoma cell intravasation and spontaneous metastasis NE mediates formation of dilated intratumoral vasculature supporting cell intravasation NE-KO mice exhibit decreased lung retention and spontaneous metastasis of tumor cells NE induces tumor cell survival and migration via activation of Src/PI3K/Akt pathway
Collapse
Affiliation(s)
- Elena Deryugina
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alexia Carré
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Veronica Ardi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,National University, 9388 Lightwave Avenue, San Diego, CA 92123, USA
| | - Tomoki Muramatsu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jonas Schmidt
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christine Pham
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA
| | - James P Quigley
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Li X, Li Y, Lu W, Chen M, Ye W, Zhang D. The Tumor Vessel Targeting Strategy: A Double-Edged Sword in Tumor Metastasis. Cells 2019; 8:E1602. [PMID: 31835465 PMCID: PMC6952935 DOI: 10.3390/cells8121602] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Tumor vessels provide essential paths for tumor cells to escape from the primary tumor and form metastatic foci in distant organs. The vessel targeting strategy has been widely used as an important clinical cancer chemotherapeutic strategy for patients with metastatic tumors. Our review introduces the contribution of angiogenesis to tumor metastasis and summarizes the application of Food and Drug Administration (FDA)-approved vessel targeting drugs for metastatic tumors. We recommend the application and mechanisms of vascular targeting drugs for inhibiting tumor metastasis and discuss the risk and corresponding countermeasures after vessel targeting treatment.
Collapse
Affiliation(s)
- Xiaobo Li
- College of Pharmacy, Jinan University, No. 601, Huangpu Road West, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yong Li
- College of Pharmacy, Jinan University, No. 601, Huangpu Road West, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Weijin Lu
- College of Pharmacy, Jinan University, No. 601, Huangpu Road West, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, No. 601, Huangpu Road West, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, No. 601, Huangpu Road West, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, No. 601, Huangpu Road West, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Metastasis is impaired by endothelial-specific Dll4 loss-of-function through inhibition of epithelial-to-mesenchymal transition and reduction of cancer stem cells and circulating tumor cells. Clin Exp Metastasis 2019; 36:365-380. [PMID: 31119445 DOI: 10.1007/s10585-019-09973-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
Abstract
Systemic inhibition of Dll4 has been shown to thoroughly reduce cancer metastasis. The exact cause of this effect and whether it is endothelial mediated remains to be clarified. Therefore, we proposed to analyze the impact of endothelial Dll4 loss-of-function on metastasis induction on three early steps of the metastatic process, regulation of epithelial-to-mesenchymal transition (EMT), cancer stem cell (CSC) frequency and circulating tumor cell (CTC) number. For this, Lewis Lung Carcinoma (LLC) cells were used to model mouse tumor metastasis in vivo, by subcutaneous transplantation into endothelial-specific Dll4 loss-of-function mice. We observed that endothelial-specific Dll4 loss-of-function is responsible for the tumor vascular regression that leads to the reduction of tumor burden. It induces an increase in tumoral blood vessel density, but the neovessels are poorly perfused, with increased leakage and reduced perivascular maturation. Unexpectedly, although hypoxia was increased in the tumor, the number and burden of macro-metastasis was significantly reduced. This is likely to be a consequence of the observed reduction in both EMT and CSC numbers caused by the endothelial-specific Dll4 loss-of-function. This multifactorial context may explain the concomitantly observed reduction of the circulating tumor cell count. Furthermore, our results suggest that endothelial Dll4/Notch-function mediates tumor hypoxia-driven increase of EMT. Therefore, it appears that endothelial Dll4 may constitute a promising target to prevent metastasis.
Collapse
|
5
|
The insect repellent N,N-diethyl-m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells. Sci Rep 2016; 6:28546. [PMID: 27345502 PMCID: PMC4921870 DOI: 10.1038/srep28546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022] Open
Abstract
The insect repellent N,N-diethyl-m-toluamide (DEET) has been reported to inhibit AChE (acetylcholinesterase) and to possess potential carcinogenic properties with excessive vascularization. In the present paper, we demonstrate that DEET specifically stimulates endothelial cells that promote angiogenesis which increases tumor growth. DEET activates cellular processes that lead to angiogenesis including proliferation, migration and adhesion. This is associated with an enhancement of NO production and VEGF expression in endothelial cells. M3 silencing or the use of a pharmacological M3 inhibitor abrogates all of these effects which reveals that DEET-induced angiogenesis is M3 sensitive. The experiments involving calcium signals in both endothelial and HEK cells overexpressing M3 receptors, as well as binding and docking studies demonstrate that DEET acts as an allosteric modulator of the M3 receptor. In addition, DEET inhibited AChE which increased acetylcholine bioavailability and binding to M3 receptors and also strengthened proangiogenic effects by an allosteric modulation.
Collapse
|
6
|
Abstract
The process of entering the bloodstream, intravasation, is a necessary step in the development of distant metastases. The focus of this review is on the pathways and molecules that have been identified as being important based on current in vitro and in vivo assays for intravasation. Properties of the vasculature which are important for intravasation include microvessel density and also diameter of the vasculature, with increased intravasation correlating with increased vessel diameter in some tumors. TGFB signaling can enhance intravasation at least in part through induction of EMT, and we discuss other TGFB target genes that are important for intravasation. In addition to TGFB signaling, a number of studies have demonstrated that activation of EGF receptor family members stimulates intravasation, with downstream signaling through PI3K, N-WASP, RhoA, and WASP to induce invadopodia. With respect to proteases, there is strong evidence for contributions by uPA/uPAR, while the roles of MMPs in intravasation may be more tumor specific. Other cells including macrophages, fibroblasts, neutrophils, and platelets can also play a role in enhancing tumor cell intravasation. The technology is now available to interrogate the expression patterns of circulating tumor cells, which will provide an important reality check for the model systems being used. With a better understanding of the mechanisms underlying intravasation, the goal is to provide new opportunities for improving prognosis as well as potentially developing new treatments.
Collapse
Affiliation(s)
- Serena P H Chiang
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Ramon M Cabrera
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey E Segall
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
7
|
Dighe S, Blake H, Jeyadevan N, Castellano I, Koh DM, Orton M, Chandler I, Swift I, Brown G. Perfusion CT vascular parameters do not correlate with immunohistochemically derived microvessel density count in colorectal tumors. Radiology 2013; 268:400-10. [PMID: 23592771 DOI: 10.1148/radiol.13112460] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE To determine whether perfusion computed tomography (CT)-derived vascular parameters-namely, blood flow, mean transit time (MTT), volume transfer constant (K(trans)), permeability-surface area product (PS), extracellular extravascular space volume, and vascular volume-correlate with the immunohistologic markers of angiogenesis in colorectal tumors. MATERIALS AND METHODS This prospective study was approved by the Regional Ethics and Research and Development Committees. The perfusion CT protocol was incorporated in the staging CT after informed consent in 29 patients (14 men, 15 women; mean age, 70 years; age range, 55-94 years). The perfusion parameters were calculated over two regions of interest (ROIs), at the invasive and luminal site defined by two radiologists independently. Accurate representative data were captured manually by correcting for motion artifacts and were analyzed by using Matlab software. The vascular heterogeneity between ROIs was assessed by using the Wilcoxon signed rank test. Perfusion CT parameters were correlated with the microvessel density (MVD) count at both corresponding sites obtained by means of immunohistochemical staining of the selected histologic slide with factor VIII and CD105 antigens by using Spearmen rank coefficient. RESULTS There was no statistically significant difference found between perfusion CT vascular parameters at the two ROIs by either of the radiologists. The Pearson coefficient for blood flow, MTT, K(trans), and PS at the two ROIs demonstrated good to moderate interobserver variability (for the two ROIs, 0.46 and 0.44; 0.67 and 0.64; 0.41 and 0.72; and 0.86 and 0.56, respectively). None of these parameters correlated with MVD count at the invasive or the luminal site for either of the two antigens. CONCLUSION Perfusion CT measurements may measure vascularity of colorectal tumors, however, correlation with MVD, which is a morphologic measure, appears inappropriate. © RSNA, 2013.
Collapse
Affiliation(s)
- Shwetal Dighe
- Department of Surgery, Mayday University Hospital NHS Trust, Croydon, London, England
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Feng ST, Sun CH, Li ZP, Mak HKF, Peng ZP, Guo HY, Meng QF. Evaluation of angiogenesis in colorectal carcinoma with multidetector-row CT multislice perfusion imaging. Eur J Radiol 2009; 75:191-6. [PMID: 19481397 DOI: 10.1016/j.ejrad.2009.04.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 04/23/2009] [Indexed: 11/26/2022]
Abstract
To evaluate the correlation between 64 multidetector-row CT (64MDCT) perfusion imaging in colorectal carcinoma and microvessel density (MVD) and vascular endothelial growth factor (VEGF), 64MDCT perfusion imaging was performed in 33 patients with pathologically verified colorectal carcinoma. These images were analyzed with perfusion functional software, and time-density curves (TDC) were created for the region of interest (ROI) encompassing the tumor, the target artery and vein. The individual perfusion maps generated indicated blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability-surface area product (PS). MVD and VEGF were evaluated by immunohistochemical staining with anti-CD34 and anti-VEGF, respectively. Correlations between MVD or VEGF with CT perfusion parameters and clinicopathological factors (Dukes' stages, invasion depth, and lymph node and liver metastasis) were also investigated. MVD in the colorectal carcinoma was 22.61+/-9.01 per x200 field. The scores obtained for VEGF expression were 4.15+/-1.09. VEGF staining was positive in 25 of 29 tumors (86.2%). There was no significant correlation between the presence of MVD, VEGF expression and clinicopathological factors (P>0.05). There was also no correlation between MVD, VEGF expression, and any dynamic CT parameters (P>0.05). The BV and MTT were significantly higher in tumors demonstrating serous coat invasion than in those without it (t=-2.63, -2.24, P=0.0137, 0.0331, respectively). BV was also significantly correlated with tumor size (r=0.41, P=0.02). Neither BF nor PS was correlated with clinicopathological factors. In conclusion, 64MDCT perfusion imaging, MVD, and VEGF may reflect angiogenic activity, but no significant correlation among these factors.
Collapse
Affiliation(s)
- Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital of SunYat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Leme MBP, Waitzberg AFL, Artigiani Neto R, Linhares MM, Matos D. [Assessment of angiogenesis expression and its relationship with prognosis of colorectal cancer by conventional and computer-assisted histopathological image analysis]. Acta Cir Bras 2007; 21:392-7. [PMID: 17160251 DOI: 10.1590/s0102-86502006000600007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 09/25/2006] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To quantify the degree of angiogenesis by conventional method (microvessel density, MVD) and computerized method (endothelial area, EA), and to evaluate their relationships with the prognosis of patients operated on for colorectal adenocarcinoma. METHODS Tumoral angiogenesis was studied by means of an immunohistochemical technique, using CD 34, on 126 patients; to quantify the angiogenesis, MVD (defined as number of microvessels per mm(2)) and EA measurement (defined as the area occupied by EA in the microscope field). A computerized method, IMAGELab software was utilized to quantify endothelial area. RESULTS The mean number of microvessels was 128.6 MV/mm(2) (SD = 44.5) and the mean EA was 4.3% (SD = 2.1). The Pearson method demonstrated a low correlation coefficient between MVD and EA (r = 0.429). No relationship between MVD and EA was observed with regard to relapse-free interval and overall survival. CONCLUSION The histological analysis of angiogenesis expression in patients with colorectal adenocarcinoma can be performed either by computer-assisted image analysis of endothelial area or by conventional microvessels counting. Both methods did not show any significant relationship between these angiogenesis parameters with relapse-free interval and overall survival.
Collapse
|
10
|
Abe A, Fukui H, Fujii S, Fujita M, Mukawa K, Ichikawa K, Tomita S, Ono Y, Imai Y, Imura J, Kubota K, Fujimori T. Involvement of cyclooxygenase-2 and vascular endothelial growth factor in vascularization and lymph node metastasis of colorectal cancers with submucosal invasion. J Gastroenterol Hepatol 2007; 22:1071-7. [PMID: 17608853 DOI: 10.1111/j.1440-1746.2006.04778.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Although patients with early colorectal cancer invading the submucosa (CRC-sm) may be treated with endoscopic mucosal resection alone, they generally undergo additional surgery because of the risk of lymph node metastasis. The aims of the present study were to examine the roles of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) in tumor vascularization and to investigate whether COX-2 and VEGF expression and tumor vascularity are useful markers for predicting lymph node metastasis in CRC-sm. METHODS Twenty-seven resected specimens of CRC-sm with lymph node dissection were examined, and expression of COX-2 and VEGF was evaluated immunohistochemically and scored. Microvessel density (MVD) in CRC-sm tissues was estimated using a Macscope system after CD34 immunostaining. The relationships among clinicopathological parameters, COX-2 and VEGF expression, and MVD in CRC-sm tissues were then analyzed. RESULTS Scores for COX-2, VEGF and MVD were all significantly higher in patients with CRC-sm with lymphatic invasion or lymph node metastasis. COX-2 score (P < 0.0001) and VEGF score (P = 0.035) were significantly correlated with MVD in CRC-sm tissues. In addition, COX-2 score was significantly correlated with VEGF score in the CRC-sm specimens examined. CONCLUSIONS Both COX-2 and VEGF are involved in tumor vascularization in CRC-sm. COX-2 expression, VEGF expression, and MVD are possible markers for predicting lymph node metastasis in patients with CRC-sm, and use of COX-2 expression may be clinically practical.
Collapse
Affiliation(s)
- Akihito Abe
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zlobec I, Steele R, Compton CC. VEGF as a predictive marker of rectal tumor response to preoperative radiotherapy. Cancer 2006; 104:2517-21. [PMID: 16222693 DOI: 10.1002/cncr.21484] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Neoadjuvant radiotherapy for rectal cancer may result in tumor downstaging or complete tumor regression leading to greater sphincter preservation. The identification of molecular predictive markers of tumor response to preoperative radiotherapy would provide an additional tool for selecting patients most likely to benefit from treatment. The aim of this study was to determine whether VEGF expression in preirradiation tumor biopsies is a useful predictive marker of tumor response in patients with rectal cancer undergoing preoperative radiotherapy. METHODS Immunohistochemistry for VEGF was performed on 59 preirradiation biopsies from patients with completely responsive (ypT0) or nonresponsive tumors after preoperative radiotherapy. VEGF positivity was evaluated using several scoring methods and the association between VEGF and tumor response was compared. The distribution of VEGF scores was obtained as well as the mean VEGF expression in the two response groups. RESULTS The mean VEGF expression in nonresponsive tumors (NR) was significantly greater than in completely responsive tumors (CR) (P = 0.0035). Nearly half (47%) of all CR tumors had a VEGF expression of 10% or less. Eleven tumors were negative (0% immunoreactivity) for the protein and all of these (100%) were complete responders. Fifty-two percent of the NR tumors had VEGF scores of 80% or greater. The four scoring methods used to determine the association between VEGF and tumor response each produced significant results (P < 0.05). CONCLUSIONS The results of this study indicate that VEGF assessed immunohistochemically from preirradiation tumor biopsies may be a useful marker of rectal tumor response to preoperative radiotherapy.
Collapse
Affiliation(s)
- Inti Zlobec
- Department of Pathology, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
12
|
Mataki Y, Takao S, Maemura K, Mori S, Shinchi H, Natsugoe S, Aikou T. Carcinoembryonic antigen messenger RNA expression using nested reverse transcription-PCR in the peripheral blood during follow-up period of patients who underwent curative surgery for biliary-pancreatic cancer: longitudinal analyses. Clin Cancer Res 2004; 10:3807-14. [PMID: 15173089 DOI: 10.1158/1078-0432.ccr-03-0130] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Outcome for patients with biliary-pancreatic cancer is still poor, despite curative operation. We investigated the clinical significance of molecular detection of circulating cancer cells in the blood as an early indicator of relapse during follow-up of patients who underwent a curative operation for biliary-pancreatic cancer. PATIENTS AND METHODS We followed 53 patients who underwent a curative operation for biliary-pancreatic cancer between 1996 and 2001. We used reverse transcription-PCR in the peripheral blood to evaluate carcinoembryonic antigen (CEA) mRNA expression for molecular detection of circulating cancer cells. Follow-up examinations every 3 months after surgery included CEA mRNA expression in the blood, serum CEA, serum carbohydrate antigen 19-9 (CA19-9), and computed tomography or magnetic resonance imaging. RESULTS Sixteen of 53 patients (30.2%) were diagnosed with a recurrence by imaging studies. The CEA mRNA detection rate in the peripheral blood of these 16 patients was 75% compared with 5.4% in the 37 patients without relapse (P < 0.001). Sensitivity of CEA mRNA, CEA, and CA19-9 serum levels was 75.0%, 50.0%, and 68.8%, respectively. Similarly, specificity was 94.6%, 64.9%, and 81.1%, respectively. CEA mRNA was expressed in the blood, even though tumor markers CEA and CA19-9 were within the normal range in patients with relapse. CEA mRNA expression in the blood, as well as the serum level of CA19-9, tended to be detected a few months earlier than detection by imaging modalities. CONCLUSIONS During the follow-up of patients who undergo a curative operation for biliary-pancreatic cancer, CEA mRNA expression in the peripheral blood might be a useful and early indicator of relapse.
Collapse
Affiliation(s)
- Yuko Mataki
- Department of Oncology, Kagoshima University School of Medicine, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|