1
|
Genova C, Marconi S, Chiorino G, Guana F, Ostano P, Santamaria S, Rossi G, Vanni I, Longo L, Tagliamento M, Zullo L, Dal Bello MG, Dellepiane C, Alama A, Rijavec E, Ludovini V, Barletta G, Passiglia F, Metro G, Baglivo S, Chiari R, Rivoltini L, Biello F, Baraibar I, Gil-Bazo I, Novello S, Grossi F, Coco S. Extracellular vesicles miR-574-5p and miR-181a-5p as prognostic markers in NSCLC patients treated with nivolumab. Clin Exp Med 2024; 24:182. [PMID: 39105937 PMCID: PMC11303437 DOI: 10.1007/s10238-024-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the management of advanced non-small cell lung cancer (NSCLC), although patient survival is still unsatisfactory. Accurate predictive markers capable of personalizing the treatment of patients with NSCLC are still lacking. Circulating extracellular vesicles involved in cell-to-cell communications through miRNAs (EV-miRs) transfer are promising markers. Plasma from 245 patients with advanced NSCLC who received nivolumab as second-line therapy was collected and analyzed. EV-miRnome was profiled on 174/245 patients by microarray platform, and selected EV-miRs were validated by qPCR. A prognostic model combining EV-miR and clinical variables was built using stepwise Cox regression analysis and tested on an independent patient cohort (71/245). EV-PD-L1 gene copy number was assessed by digital PCR. For 54 patients with disease control, EV-miR changes at best response versus baseline were investigated by microarray and validated by qPCR. EV-miRNome profiling at baseline identified two EV-miRs (miR-181a-5p and miR-574-5p) that, combined with performance status, are capable of discriminating patients unlikely from those that are likely to benefit from immunotherapy (median overall survival of 4 months or higher than 9 months, respectively). EV-PD-L1 digital evaluation reported higher baseline copy number in patients at increased risk of mortality, without improving the prognostic score. Best response EV-miRNome profiling selected six deregulated EV-miRs (miR19a-3p, miR-20a-5p, miR-142-3p, miR-1260a, miR-1260b, and miR-5100) in responding patients. Their longitudinal monitoring highlighted a significant downmodulation already in the first treatment cycles, which lasted more than 6 months. Our results demonstrate that EV-miRs are promising prognostic markers for NSCLC patients treated with nivolumab.
Collapse
Affiliation(s)
- Carlo Genova
- UOC Clinica Di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Dipartimento Di Medicina Interna E Specialità Mediche (DiMI), Università Degli Studi Di Genova, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | - Silvia Marconi
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo Ed Elvo Tempia, Via Malta, 3, 13900, Biella, Italy.
| | - Francesca Guana
- Laboratory of Cancer Genomics, Fondazione Edo Ed Elvo Tempia, Via Malta, 3, 13900, Biella, Italy
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo Ed Elvo Tempia, Via Malta, 3, 13900, Biella, Italy
| | - Sara Santamaria
- UOC Clinica Di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Giovanni Rossi
- UOC Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Irene Vanni
- Genetica Oncologica, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Luca Longo
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Marco Tagliamento
- Dipartimento Di Medicina Interna E Specialità Mediche (DiMI), Università Degli Studi Di Genova, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | - Lodovica Zullo
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Maria Giovanna Dal Bello
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Chiara Dellepiane
- UOC Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Angela Alama
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Erika Rijavec
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milan, Italy
| | - Vienna Ludovini
- Department of Medical Oncology, Santa Maria Della Misericordia Hospital, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Giulia Barletta
- UOC Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Francesco Passiglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043, Orbassano, TO, Italy
| | - Giulio Metro
- Department of Medical Oncology, Santa Maria Della Misericordia Hospital, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Sara Baglivo
- Department of Medical Oncology, Santa Maria Della Misericordia Hospital, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Rita Chiari
- Azienda Ospedaliera "Ospedali Riuniti Marche Nord", Piazzale Cinelli 4, 61126, Pesaro, PU, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Giacomo Venezian, 1, 20133, Milan, Italy
| | - Federica Biello
- Oncology Unit, Azienda Ospedaliera Universitaria Maggiore Della Carità, Largo Bellini, 28100, Novara, Italy
| | - Iosune Baraibar
- Department of Oncology, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008, Pamplona, Spain
- Program in Solid Tumors, Center for Applied Medical Research and Navarra Institute for Health Research, Av. de Pío XII, 55, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008, Pamplona, Spain
- Program in Solid Tumors, Center for Applied Medical Research and Navarra Institute for Health Research, Av. de Pío XII, 55, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Silvia Novello
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043, Orbassano, TO, Italy
| | - Francesco Grossi
- Division of Medical Oncology, Department of Medicine and Surgery, Ospedale Di Circolo E Fondazione Macchi, ASST Dei Sette Laghi, Via Lazio, 36, 21100, Varese, Italy
| | - Simona Coco
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
2
|
Raut JR, Bhardwaj M, Schöttker B, Holleczek B, Schrotz‐King P, Brenner H. Cancer-specific risk prediction with a serum microRNA signature. Cancer Sci 2024; 115:2049-2058. [PMID: 38523358 PMCID: PMC11145115 DOI: 10.1111/cas.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
We recently derived and validated a serum-based microRNA risk score (miR-score) that predicted colorectal cancer (CRC) occurrence with very high accuracy within 14 years of follow-up in a population-based cohort study from Germany (ESTHER cohort). Here, we aimed to evaluate associations of the CRC-specific miR-score with the risk of developing other common cancers, including female breast cancer (BC), lung cancer (LC), and prostate cancer (PC), in the ESTHER cohort. MicroRNAs (miRNAs) were profiled by quantitative real-time PCR in serum samples collected at baseline from randomly selected incident cases of BC (n = 90), LC (n = 88), and PC (n = 93) and participants without diagnosis of CRC, LC, BC, or PC (controls, n = 181) until the end of the 17-year follow-up. Multivariate logistic regression models were used to evaluate the associations of the miR-score with BC, LC, and PC incidence. The miR-score showed strong inverse associations with BC and LC incidence [odds ratio per 1 standard deviation increase: 0.60 (95% confidence interval [CI] 0.43-0.82), p = 0.0017, and 0.64 (95% CI 0.48-0.84),p = 0.0015, respectively]. Associations with PC were not statistically significant but pointed in the positive direction. Our study highlights the potential of serum-based miRNA biomarkers for cancer-specific risk prediction. Further large cohort studies aiming to investigate, validate, and optimize the use of circulating miRNA signatures for cancer risk assessment are warranted.
Collapse
Grants
- Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (Ministry of Science, Research and Art Baden-Württemberg, Stuttgart, Germany)
- Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research, Berlin, Germany)
- Bundesministerium für Familie, Senioren, Frauen und Jugend (Federal Ministry of Family Affairs, Senior Citizens, Women and Youth, Berlin, Germany)
- Ministerium für Soziales, Gesundheit, Frauen und Familie, Deutschland (Ministry for Social Affairs, Health, Women and Family Affairs, Saarbrücken, Germany)
- Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research, Berlin, Germany)
Collapse
Affiliation(s)
- Janhavi R. Raut
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Division of Preventive OncologyGerman Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Megha Bhardwaj
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Network Aging ResearchUniversity of HeidelbergHeidelbergGermany
| | | | - Petra Schrotz‐King
- Division of Preventive OncologyGerman Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Division of Preventive OncologyGerman Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
3
|
Ciccone G, Ibba ML, Coppola G, Catuogno S, Esposito CL. The Small RNA Landscape in NSCLC: Current Therapeutic Applications and Progresses. Int J Mol Sci 2023; 24:ijms24076121. [PMID: 37047090 PMCID: PMC10093969 DOI: 10.3390/ijms24076121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the second most diagnosed type of malignancy and the first cause of cancer death worldwide. Despite recent advances, the treatment of choice for NSCLC patients remains to be chemotherapy, often showing very limited effectiveness with the frequent occurrence of drug-resistant phenotype and the lack of selectivity for tumor cells. Therefore, new effective and targeted therapeutics are needed. In this context, short RNA-based therapeutics, including Antisense Oligonucleotides (ASOs), microRNAs (miRNAs), short interfering (siRNA) and aptamers, represent a promising class of molecules. ASOs, miRNAs and siRNAs act by targeting and inhibiting specific mRNAs, thus showing an improved specificity compared to traditional anti-cancer drugs. Nucleic acid aptamers target and inhibit specific cancer-associated proteins, such as "nucleic acid antibodies". Aptamers are also able of receptor-mediated cell internalization, and therefore, they can be used as carriers of secondary agents giving the possibility of producing very highly specific and effective therapeutics. This review provides an overview of the proposed applications of small RNAs for NSCLC treatment, highlighting their advantageous features and recent advancements in the field.
Collapse
Affiliation(s)
- Giuseppe Ciccone
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Maria Luigia Ibba
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Caserta, Italy
| | - Gabriele Coppola
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Silvia Catuogno
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Carla Lucia Esposito
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy
| |
Collapse
|
4
|
MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics (Basel) 2022; 12:diagnostics12071610. [PMID: 35885514 PMCID: PMC9322918 DOI: 10.3390/diagnostics12071610] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the dominant emerging factor in cancer-related mortality around the globe. Therapeutic interventions for lung cancer are not up to par, mainly due to reoccurrence/relapse, chemoresistance, and late diagnosis. People are currently interested in miRNAs, which are small double-stranded (20–24 ribonucleotides) structures that regulate molecular targets (tumor suppressors, oncogenes) involved in tumorigeneses such as cell proliferation, apoptosis, metastasis, and angiogenesis via post-transcriptional regulation of mRNA. Many studies suggest the emerging role of miRNAs in lung cancer diagnostics, prognostics, and therapeutics. Therefore, it is necessary to intensely explore the miRNOME expression of lung tumors and the development of anti-cancer strategies. The current review focuses on the therapeutic, diagnostic, and prognostic potential of numerous miRNAs in lung cancer.
Collapse
|
5
|
Xie C, Zhu J, Huang C, Yang X, Wang X, Meng Y, Geng S, Wu J, Shen H, Hu Z, Meng Z, Li X, Zhong C. Interleukin-17A mediates tobacco smoke-induced lung cancer epithelial-mesenchymal transition through transcriptional regulation of ΔNp63α on miR-19. Cell Biol Toxicol 2022; 38:273-289. [PMID: 33811578 DOI: 10.1007/s10565-021-09594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/21/2021] [Indexed: 10/21/2022]
Abstract
Interleukin-17A (IL-17A) is an essential inflammatory cytokine in the progress of carcinogenesis. Tobacco smoke (TS) is a major risk factor of lung cancer that influences epithelial-mesenchymal transition (EMT) process. However, the potential mechanism by which IL-17A mediates the progression of lung cancer in TS-induced EMT remains elusive. In the present study, it was revealed that the IL-17A level was elevated in lung cancer tissues, especially in tumor tissues of cases with experience of smoking, and a higher IL-17A level was correlated with induction of EMT in those specimens. Moreover, the expression of ΔNp63α was increased in IL-17A-stimulated lung cancer cells. ΔNp63α functioned as a key oncogene that bound to the miR-17-92 cluster promoter and transcriptionally increased the expression of miR-19 in lung cancer cells. Overexpression of miR-19 promoted EMT in lung cancer with downregulation of E-cadherin and upregulation of N-cadherin, while its inhibition suppressed EMT. Finally, the upregulated levels of IL-17A, ΔNp63α, and miR-19 along with the alteration of EMT-associated biomarkers were found in lung tissues of TS-exposed mice. Taken together, the abovementioned results suggest that IL-17A increases ΔNp63α expression, transcriptionally elevates miR-19 expression, and promotes TS-induced EMT in lung cancer. These findings may provide a new insight for the identification of therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jianyun Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Cong Huang
- Guangde Center for Diseases Prevention and Control, Guangde, 242200, Anhui, China
| | - Xue Yang
- Department of Clinical Nutrition, Nanjing Drum Tower Hospital, Nanjing, 211166, Jiangsu, China
| | - Xiaoqian Wang
- Department of Clinical Nutrition, Nanjing Drum Tower Hospital, Nanjing, 211166, Jiangsu, China
| | - Yu Meng
- Wuxi Center for Disease Control and Prevention, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Hongbin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211126, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, 211126, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211126, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, 211126, China
| | - Zili Meng
- Department of Respiratory Medicine, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, Jiangsu, China.
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
6
|
Maleki Dana P, Jahanshahi M, Badehnoosh B, Shafabakhsh R, Asemi Z, Hallajzadeh J. Inhibitory effects of berberine on ovarian cancer: Beyond apoptosis. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Fang H, Li HF, He MH, Yang M, Zhang JP. HDAC3 Downregulation Improves Cerebral Ischemic Injury via Regulation of the SDC1-Dependent JAK1/STAT3 Signaling Pathway Through miR-19a Upregulation. Mol Neurobiol 2021; 58:3158-3174. [PMID: 33634377 DOI: 10.1007/s12035-021-02325-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
Abstract
Histone deacetylase (HDAC) inhibitors can protect the brain from ischemic injury. This study aimed to identify the regulation of HDAC3 in cerebral ischemic injury. Middle cerebral artery occlusion (MCAO) was performed to establish a mouse model with cerebral ischemic injury, in which expression of HDAC3 and miR-19a was evaluated using RT-qPCR. In MCAO mice with silencing of HDAC3, infarct volume was determined using 2,3,5-triphenyl tetrazolium chloride (TTC) staining, and serum levels of TNF-α, IL-6, and IL-8 were measured using ELISA. An in vitro model was constructed in human umbilical vein endothelial cells (HUVECs) with oxygen-glucose deprivation/reoxygenation (OGD/R), followed by gain- and loss-of-function experiments. Relationships among miR-19a, HDAC3, and syndecan-1 (SDC1) were explored using RIP, ChIP, and dual-luciferase reporter assays. The expression of HDAC3, SDC1, JAK1, and STAT3 along with the extent of JAK1 and STAT3 phosphorylation was measured by Western blot analysis. HUVEC viability, apoptosis, and angiogenesis were assessed by CCK-8, flow cytometry, and angiogenesis assays in vitro separately. We found elevated HDAC3 and downregulated miR-19a expression in the MCAO mice. Decreased TNF-α, IL-6, and IL-8 serum levels were observed in response to silencing of HDAC3. HDAC3 inhibited the expression of miR-19a, which in turn targeted SDC1, leading to JAK1/STAT3 signaling pathway activation. HDAC3 overexpression or miR-19a inhibition repressed HUVEC viability and angiogenesis but enhanced HUVEC apoptosis. Our data unraveled the mechanism whereby HDAC3 inhibition ameliorated cerebral ischemic injury by activating the JAK1/STAT3 signaling pathway through miR-19a-mediated SDC1 inhibition.
Collapse
Affiliation(s)
- Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, People's Republic of China
- Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, People's Republic of China
- Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Hua-Feng Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ming-Hai He
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, People's Republic of China
- Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, People's Republic of China
- Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, People's Republic of China
- Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, People's Republic of China
- Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, People's Republic of China.
- Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, People's Republic of China.
- Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
8
|
Zhu X, Guo Q, Zou J, Wang B, Zhang Z, Wei R, Zhao L, Zhang Y, Chu C, Fu X, Li X. MiR-19a-3p Suppresses M1 Macrophage Polarization by Inhibiting STAT1/IRF1 Pathway. Front Pharmacol 2021; 12:614044. [PMID: 34017248 PMCID: PMC8129022 DOI: 10.3389/fphar.2021.614044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages, an important type of immune cells, are generally polarized to classically activated macrophage (M1) or alternatively activated macrophage (M2) to respond to environmental stimuli. Signal transducer and activator of transcription 1 (STAT1), a very important transcription factor, can promote M1 macrophage polarization. However, the mechanisms of regulating STAT1 in macrophage polarization remain unclear. In the present study, STAT1 was markedly elevated, however, miR-19a-3p was down-regulated in interferon (IFN)-γ and lipopolysaccharide (LPS) treated RAW264.7 cells, and dual-luciferase reporter assay identified that miR-19a-3p directly targeted STAT1 by binding to its 3′UTR. Up-regulated miR-19a-3p inhibited M1 polarization by targeting STAT1/interferon regulatory factor 1 (IRF1) and vice versa in vitro. Consistently, overexpression of miR-19a-3p in LPS treated mice by systemically administering agomiR-19a-3p effectively reduced the inflammation in mouse lung tissues, and inhibited M1 macrophage polarization via suppressing STAT1/IRF1 pathway. In summary, our study confirmed that miR-19a-3p, as a direct regulator of STAT1, inhibited M1 macrophages polarization. The miR-19a-3p/STAT1/IRF1 pathway can potentially be used to design novel immunotherapy for modulating macrophage polarization.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Qiang Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jing Zou
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Wang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ran Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Lin Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yunhong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chu Chu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiaoxiao Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Role of miRNA-19a in Cancer Diagnosis and Poor Prognosis. Int J Mol Sci 2021; 22:ijms22094697. [PMID: 33946718 PMCID: PMC8125123 DOI: 10.3390/ijms22094697] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer is a multifactorial disease that affects millions of people every year and is one of the most common causes of death in the world. The high mortality rate is very often linked to late diagnosis; in fact, nowadays there are a lack of efficient and specific markers for the early diagnosis and prognosis of cancer. In recent years, the discovery of new diagnostic markers, including microRNAs (miRNAs), has been an important turning point for cancer research. miRNAs are small, endogenous, non-coding RNAs that regulate gene expression. Compelling evidence has showed that many miRNAs are aberrantly expressed in human carcinomas and can act with either tumor-promoting or tumor-suppressing functions. miR-19a is one of the most investigated miRNAs, whose dysregulated expression is involved in different types of tumors and has been potentially associated with the prognosis of cancer patients. The aim of this review is to investigate the role of miR-19a in cancer, highlighting its involvement in cell proliferation, cell growth, cell death, tissue invasion and migration, as well as in angiogenesis. On these bases, miR-19a could prove to be truly useful as a potential diagnostic, prognostic, and therapeutic marker.
Collapse
|
10
|
Zhong S, Golpon H, Zardo P, Borlak J. miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 2021; 230:164-196. [PMID: 33253979 DOI: 10.1016/j.trsl.2020.11.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide and miRNAs play a key role in LC development. To better diagnose LC and to predict drug treatment responses we evaluated 228 articles encompassing 16,697 patients and 12,582 healthy controls. Based on the criteria of ≥3 independent studies and a sensitivity and specificity of >0.8 we found blood-borne miR-20a, miR-10b, miR-150, and miR-223 to be excellent diagnostic biomarkers for non-small cell LC whereas miR-205 is specific for squamous cell carcinoma. The systematic review also revealed 38 commonly regulated miRNAs in tumor tissue and the circulation, thus enabling the prediction of histological subtypes of LC. Moreover, theranostic biomarker candidates with proven responsiveness to checkpoint inhibitor treatments were identified, notably miR-34a, miR-93, miR-106b, miR-181a, miR-193a-3p, and miR-375. Conversely, miR-103a-3p, miR-152, miR-152-3p, miR-15b, miR-16, miR-194, miR-34b, and miR-506 influence programmed cell death-ligand 1 and programmed cell death-1 receptor expression, therefore providing a rationale for the development of molecularly targeted therapies. Furthermore, miR-21, miR-25, miR-27b, miR-19b, miR-125b, miR-146a, and miR-210 predicted response to platinum-based treatments. We also highlight controversial reports on specific miRNAs. In conclusion, we report diagnostic miRNA biomarkers for in-depth clinical evaluation. Furthermore, in an effort to avoid unnecessary toxicity we propose predictive biomarkers. The biomarker candidates support personalized treatment decisions of LC patients and await their confirmation in randomized clinical trials.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Heiko Golpon
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Patrick Zardo
- Clinic for Cardiothoracic and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
11
|
Luo T, Zhou X, Jiang E, Wang L, Ji Y, Shang Z. Osteosarcoma Cell-Derived Small Extracellular Vesicles Enhance Osteoclastogenesis and Bone Resorption Through Transferring MicroRNA-19a-3p. Front Oncol 2021; 11:618662. [PMID: 33842319 PMCID: PMC8029976 DOI: 10.3389/fonc.2021.618662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer characterized by an aggressive phenotype with bone destruction. The prognosis of OS patients remains unoptimistic with the current treatment strategy. Recently, osteoclasts are believed to play a crucial role in cancer bone metastasis. Thus, osteoclast could be a target both in bone destruction and cancer progression in OS. However, mechanisms governing osteoclastogenesis in OS remain poorly understood. miRNA delivered by small extracellular vesicles (sEVs) could mediate cellular communications. In this study, we investigated the effects of sEVs on osteoclastogenesis and osteoclast function, also clarified the underlying mechanism. We herein found that sEVs promoted pre-osteoclast migration, osteoclastogenesis and resorption by exposing RAW264.7 cells to sEVs derived from OS cells. Bioinformatics analysis showed that phosphatase tension homologue (PTEN), and miR-19a-3p were involved in OS progression. Overexpression of miR-19a-3p or sEVs’ miR-19a-3p promoted osteoclast formation and function through PTEN/PI3K/AKT signaling pathway, while inhibition of miR-19a-3p showed the contrary results. The bone marrow macrophages (BMMs) were used to verify the results. OS mice, which were established by subcutaneous injection of OS cells, exhibited increased levels of sEVs’ miR-19a-3p in blood. Moreover, micro-computed tomography (CT) and histomorphometry analysis demonstrated that OS mice exhibited osteopenia with increased number of osteoclasts. In conclusion, miR-19a-3p delivery via OS cell-derived sEVs promotes osteoclast differentiation and bone destruction through PTEN/phosphatidylinositol 3 -kinase (PI3K)/protein kinase B (AKT) signaling pathway. These findings highlight sEVs packaging of miR-19a-3p as a potential target for prevention and treatment of bone destruction and cancer progression in OS patients. And this finding provides a novel potentially therapeutic target for the bone metastasis.
Collapse
Affiliation(s)
- Tingting Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaocheng Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Xie C, Zhu J, Yang X, Huang C, Zhou L, Meng Z, Li X, Zhong C. TAp63α Is Involved in Tobacco Smoke-Induced Lung Cancer EMT and the Anti-cancer Activity of Curcumin via miR-19 Transcriptional Suppression. Front Cell Dev Biol 2021; 9:645402. [PMID: 33748140 PMCID: PMC7970191 DOI: 10.3389/fcell.2021.645402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
As a key risk factor for lung cancer, tobacco smoke (TS) influences several cellular processes, including epithelial-mesenchymal transition (EMT). TAp63α is a crucial transcription factor involved in tumor progression. The present study was designed to investigate the potential role and underlying mechanisms of TAp63α in TS-induced lung cancer EMT. We found that compared to normal tissues, the tumor tissues collected from lung cancer patients showed a lower level of TAp63α expression, along with downregulated E-cadherin expression and upregulated Vimentin expression. Results of treatment with TAp63α and TAp63α siRNA as well as with tumor growth factor-β (TGF-β) showed that TAp63α acted as a tumor suppressor gene, and its upregulated expression suppressed lung cancer EMT. Significantly, TS exposure altered expression of EMT-related markers, enhanced cell migratory and invasive capacities, and decreased the TAp63α expression level in lung cancer cells. Overexpression of TAp63α significantly alleviated TS-stimulated lung cancer EMT. Mechanistically, TAp63α expression transcriptionally reduced the miR-19 level, which resulted in the suppression of lung cancer EMT. Additionally, as a natural compound possessing anti-cancer effects, curcumin inhibited TS-induced lung cancer EMT by increasing TAp63α expression and reducing miR-19 expression. Collectively, our results indicate that TAp63α inhibits TS-induced lung cancer EMT via transcriptionally suppressing miR-19 and the inhibitory effect of TAp63α on miR-19 mediates the anti-cancer action of curcumin. These findings provide new insights into novel targets for lung cancer prevention.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianyun Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Digestive Disease and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xue Yang
- Department of Clinical Nutrition, Nanjing Drum Tower Hospital, Nanjing, China
| | - Cong Huang
- Guangde Center for Diseases Prevention and Control, Guangde, China
| | - Liping Zhou
- Cell Therapy Center, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zili Meng
- Department of Respiratory Medicine, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Circulating microRNA Panel as a Potential Novel Biomarker for Oral Squamous Cell Carcinoma Diagnosis. Cancers (Basel) 2021; 13:cancers13030449. [PMID: 33504017 PMCID: PMC7865311 DOI: 10.3390/cancers13030449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Although early detection of oral squamous cell carcinoma (OSCC) is considered vital, classical biomarkers have shown poor sensitivity and specificity for early detection and monitoring of OSCC. Therefore, identification of reliable and sensitive biomarkers allowing for early detection and monitoring of OSCC is of the utmost importance. In this study, we successfully identified significantly upregulated or downregulated microRNAs in OSCC patients, and reported that a combination of six microRNAs could distinguish between OSCC and the control group with a higher degree of accuracy. Furthermore, compared with serum squamous cell carcinoma (SCC) antigen, the miRNA panel reflected the presence of OSCC accurately. The present results suggest that the combined microRNA panel based on serum microRNA levels shows potential as a novel diagnostic biomarker of OSCC. Abstract A lack of reliable biomarkers for oral squamous cell carcinoma (OSCC) poses a major clinical issue. The sensitivity and specificity of classical serum tumor markers, such as the squamous cell carcinoma antigen (SCC-Ag), are quite poor, especially for early detection. This study aimed to identify specific serum miRNAs potentially serving as OSCC biomarkers. The expression levels of candidate miRNAs in serum samples from 40 OSCC patients and 40 healthy controls were quantitatively analyzed via microarray and reverse transcription PCR (RT-PCR) analyses. To enhance the accuracy of detection, we used Fisher’s linear discriminant analysis to establish a diagnostic model that incorporated a combination of selected miRNAs. Consequently, miR-19a and miR-20a were significantly upregulated in the patient group (p = 0.014 and 0.036, respectively), whereas miR-5100 was downregulated (p = 0.001). We found that a combination of six miRNAs (miR-24, miR-20a, miR-122, miR-150, miR-4419a, and miR-5100) could distinguish between OSCC and the control group with a higher degree of accuracy (Area Under the Curve, AUC: 0.844, sensitivity: 55%, and specificity: 92.5%). Furthermore, compared to serum SCC antigen, the 6-miRNA panel could accurately detect the presence of OSCC. The present specific miRNAs panel may serve as a novel candidate biomarker of oral cancer.
Collapse
|
14
|
Peng T, Yang F, Sun Z, Yan J. miR-19a-3p Facilitates Lung Adenocarcinoma Cell Phenotypes by Inhibiting TEK. Cancer Biother Radiopharm 2021; 37:589-601. [PMID: 33493418 DOI: 10.1089/cbr.2020.4456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Both TEK and miR-19a-3p have been reported to regulate lung adenocarcinoma (LUAD) progression. However, the association between TEK and miR-19a-3p in LUAD remained unknown. This research aimed to investigate a novel miR-19a-3p/TEK interactome in LUAD cells. Methods: The mRNA expression and protein expression in the cell lines were determined using qPCR and Western blot assay, respectively. CCK-8 assay, EDU assay, flow cytometry cell apoptosis assay, scratch assay, and cell-to-extracellular matrix adhesion assay were performed to detect the proliferation, apoptosis, migration, and adhesion ability of A549 and H1975 cell lines. Results: Findings revealed that both mRNA and protein levels of TEK were downregulated in the LUAD tumor tissues and cell lines. It was also found that compared with the control group, the transfection of TEK overexpression plasmids into H1975 and A549 cell lines significantly inhibited cancerous phenotypes. However, experimental results indicated that by downregulating TEK, miR-19a-3p promoted LUAD cell phenotypes. Conclusion: This research demonstrated that an interactome existed between miR-19a-3p and TEK and that miR-19a-3p could suppress LUAD tumors by inhibiting TEK. This novel interactome could be used as a novel therapy target for LUAD.
Collapse
Affiliation(s)
- Tao Peng
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| | - Fan Yang
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| | - Zhanwen Sun
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| | - Jie Yan
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| |
Collapse
|
15
|
Cao X, Zhang J, Apaer S, Yao G, Li T. microRNA-19a-3p and microRNA-376c-3p Promote Hepatocellular Carcinoma Progression Through SOX6-Mediated Wnt/β-Catenin Signaling Pathway. Int J Gen Med 2021; 14:89-102. [PMID: 33469348 PMCID: PMC7812052 DOI: 10.2147/ijgm.s278538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Recent researches have suggested that microRNA (miR)-19a-3p and miR-376c-3p might function as initiators in diverse cancers. Based on which, in this current study, we aimed to probe into the combined effects and mechanisms of miR-19a-3p and miR-376c-3p in hepatocellular carcinoma (HCC) cells. Methods Tumor tissues and adjacent normal tissues from 21 cases of HCC patients, HCC cell lines, and human normal liver cell lines were used in this study. RT-qPCR and Western blot were implemented to detect the expression of miR-19a-3p, miR-376c-3p, SOX6, and Wnt/β-catenin pathway-associated factors in HCC tissues and cells. The direct relationships between miR-19a-3p or miR-376c-3p and SOX6 were confirmed by luciferase activity assay. HCC cells were treated with miR-19a-3p inhibitor, miR-376c-3p inhibitor, or oe-SOX-6 to figure out their functions in HCC malignancy. The in vivo assays were conducted for the confirmation of in vitro results. Results In both HCC tissues and cells, miR-19a-3p and miR-376c-3p were highly expressed, and SOX6 was poorly expressed. Depleted miR-19a-3p or miR-376c-3p was found to result in retarded HCC development. Bioinformatics analysis and luciferase activity assay revealed that SOX6 was the common target gene of miR-19a-3p and miR-376c-3p. Overexpressed SOX6 was demonstrated to block the Wnt/β-catenin pathway, thereby slowing down HCC progression. The in vivo assays showed that suppressed miR-19a-3p or miR-376c-3p and elevated SOX6 could reduce the tumor volume and weight of nude mice. Conclusion This study suggests that miR-19a-3p/miR-376c-3p activates the Wnt/β-catenin pathway via targeting SOX6, contributing to promoted biological functions of HCC cells.
Collapse
Affiliation(s)
- Xinling Cao
- Department of Liver Transplantation & Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Jingjing Zhang
- Department of Nephrology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Shadike Apaer
- Department of Liver Transplantation & Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Gang Yao
- Department of Liver Transplantation & Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Tao Li
- Department of Liver Transplantation & Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| |
Collapse
|
16
|
Paciorek P, Żuberek M, Grzelak A. Rola miRNA w rozwoju wybranych nowotworów – potencjalne zastosowanie w diagnostyce*. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streszczenie
MikroRNA (miRNA) są małymi cząsteczkami kwasu rybonukleinowego, które mimo że nie podlegają procesowi translacji, pełnią ważną funkcję regulacyjną w komórkach eukariotycznych. Ich fizjologiczną funkcją jest utrzymywanie homeostazy komórek. Zaburzona ekspresja miRNA może spowodować rozwój wielu chorób, w tym chorób nowotworowych. Działanie miRNA polega na hamowaniu tworzenia się białek, w tym białek o właściwościach onkogennych i antyonkogennych. Mutacje w miejscach kodowania miRNA mogą prowadzić do nadmiernego lub zmniejszonego wytwarzania wspomnianych białek. Odkrycie miRNA i poznanie ich roli w komórce otworzyło nowe możliwości dla diagnostyki chorób nowotworowych. Zmiany poziomu odpowiednich miRNA, w krwiobiegu lub innych płynach ustrojowych, mogą być markerem diagnostycznym chorób. Diagnostyka onkologiczna mogłaby przebiegać na podstawie badań profilu miRNA pacjenta i porównania go z opracowanymi wcześniej profilami zmian miRNA powiązanymi z występowaniem danego rodzaju choroby nowotworowej. Informacja o zmianach profilu miRNA podstawowych w regulacji ekspresji genów związanych z procesami nowotworzenia, mogłaby się przyczynić do opracowania terapii eksperymentalnych opartych na przywróceniu pierwotnego poziomu miRNA w komórkach, a tym samym, na przywróceniu prawidłowej regulacji ekspresji genów. Coraz nowsze metody wyciszania i włączania ekspresji miRNA mogą w przyszłości zaowocować skutecznymi rozwiązaniami terapeutycznymi.
Collapse
Affiliation(s)
- Patrycja Paciorek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Mariusz Żuberek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Agnieszka Grzelak
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| |
Collapse
|
17
|
Shiosaki J, Tiirikainen M, Peplowska K, Shaeffer D, Machida M, Sakamoto K, Takahashi M, Kojima K, Machi J, Bryant-Greenwood P, Kuwada SK. Serum micro-RNA Identifies Early Stage Colorectal Cancer in a Multi-Ethnic Population. Asian Pac J Cancer Prev 2020; 21:3019-3026. [PMID: 33112562 PMCID: PMC7798181 DOI: 10.31557/apjcp.2020.21.10.3019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Certain microRNAs (miR) have been previously described to be dysregulated in cancers and can be detected in blood samples. Studies examining the utility of miRs for colon cancer screening have primarily been performed in ethnically homogeneous groups of patients, thus the performance of miRs in multiethnic populations is unknown. METHODS Four miRs were selected that were shown to be aberrantly expressed in the blood or stool of patients with colorectal cancer (CRC) of various ethnicities. In this study, the ability of these miRs to discern early stage CRC was determined in a previously untested multiethnic population of 73 CRC cases and 18 controls. RESULTS The ratios of non-vesicular to extracellular vesicular levels of miR's -21, -29a, and -92a were statistically and quantitatively related to CRC stage compared to controls. CONCLUSION Serum levels of miR-21, miR-29a and miR-92a were able to significantly detect early stage CRC in a multiethnic and previously untested population.<br />.
Collapse
Affiliation(s)
- Jessica Shiosaki
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, MEB, Honolulu, Hawaii, United States
| | - Maarit Tiirikainen
- University of Hawaii Cancer Center, 01 Ilalo Street, Honolulu, Hawaii, United States
| | - Karolina Peplowska
- University of Hawaii Cancer Center, 01 Ilalo Street, Honolulu, Hawaii, United States
| | - David Shaeffer
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, MEB, Honolulu, Hawaii, United States
| | - Michio Machida
- Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | - Kuniaki Kojima
- Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Junji Machi
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, MEB, Honolulu, Hawaii, United States
| | | | - Scott K Kuwada
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, MEB, Honolulu, Hawaii, United States.,University of Hawaii Cancer Center, 01 Ilalo Street, Honolulu, Hawaii, United States
| |
Collapse
|
18
|
Integrating circulating miRNA analysis in the clinical management of lung cancer: Present or future? Mol Aspects Med 2020; 72:100844. [DOI: 10.1016/j.mam.2020.100844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
|
19
|
Srivastava A, Amreddy N, Pareek V, Chinnappan M, Ahmed R, Mehta M, Razaq M, Munshi A, Ramesh R. Progress in extracellular vesicle biology and their application in cancer medicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1621. [PMID: 32131140 PMCID: PMC7317410 DOI: 10.1002/wnan.1621] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Under the broader category of extracellular vesicles (EVs), exosomes are now well recognized for their contribution and potential for biomedical research. During the last ten years, numerous technologies for purification and characterization of EVs have been developed. This enhanced knowledge has resulted in the development of novel applications of EVs. This review is an attempt to capture the exponential growth observed in EV science in the last decade and discuss the future potential to improve our understanding of EVs, develop technologies to overcome current limitations, and advance their utility for human benefit, especially in cancer medicine. This article is categorized under:Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Narsireddy Amreddy
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Vipul Pareek
- Department of Hematology and Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mahendran Chinnappan
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rebaz Ahmed
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Meghna Mehta
- Department of Radiation Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mohammad Razaq
- Department of Hematology and Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anupama Munshi
- Department of Radiation Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rajagopal Ramesh
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
20
|
Abstract
Lung cancer is the number one cause of cancer-related mortality worldwide. To improve disease outcome, it is crucial to implement biomarkers into the clinics which assist physicians in their decisions regarding diagnosis, prognosis, as well as prediction of treatment response. Liquid biopsy offers an opportunity to obtain such biomarkers in a minimal invasive manner by retrieving tumor-derived material from body fluids of the patient. The abundance of circulating microRNAs is known to be altered in disease and has therefore been studied extensively as a cancer biomarker. Circulating microRNAs present a variety of favorable characteristics for application as liquid biopsy-based biomarkers, including their high stability, relatively high abundance, and presence is nearly all body fluids. Although the application of circulating microRNAs for the management of lung cancer has not entered the clinics yet, several studies showed their utility for diagnosis, prognosis, and efficacy prediction of various treatment strategies, including surgery, radio-/chemotherapy, as well as targeted therapy. To compensate for their limited tumor specificity, several microRNAs are frequently combined into microRNA panels. Moreover, the possibility to combine single microRNAs or microRNA panels with tumor imaging or other cancer-specific biomarkers has the potential to increase specificity and sensitivity and could lead to the clinical application of novel multi-marker combinations.
Collapse
|
21
|
Chen QQ, Shi JM, Ding Z, Xia Q, Zheng TS, Ren YB, Li M, Fan LH. Berberine induces apoptosis in non-small-cell lung cancer cells by upregulating miR-19a targeting tissue factor. Cancer Manag Res 2019; 11:9005-9015. [PMID: 31695492 PMCID: PMC6814314 DOI: 10.2147/cmar.s207677] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/20/2019] [Indexed: 11/23/2022] Open
Abstract
Background Berberine (BBR) from the widely used Chinese herbal medicine Huanglian has an array of pharmacological and biochemical properties, including anti-neoplastic activity. However, the specific mechanisms underlying these properties are unknown. The aim of this study was to explore the anti-tumor mechanisms of BBR in non-small cell lung cancer (NSCLC). Methods The effects of BBR on NSCLC tumor development and programmed cell death were investigated both in vivo and in vitro. Luciferase reporter assays were used to determine whether tissue factor (TF) was a target of miR-19a. Results BBR suppressed NSCLC growth and promoted apoptosis in NSCLC cells by modulating miR-19a and TF expression. Luciferase assays showed that TF was a direct inhibitory target of miR-19a in NSCLC cells. BBR induced apoptosis through the miR-19a/TF/MAPK axis. Conclusion The results suggest that BBR induces apoptosis of NSCLC cells via the miR-19a/TF/MAPK signaling pathway.
Collapse
Affiliation(s)
- Qian-Qian Chen
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, People's Republic of China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai 200072, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu 22601, People's Republic of China
| | - Jia-Min Shi
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, People's Republic of China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Zhou Ding
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, People's Republic of China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Qing Xia
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, People's Republic of China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Tian-Sheng Zheng
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, People's Republic of China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Yan-Bei Ren
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, People's Republic of China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Ming Li
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, People's Republic of China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Li-Hong Fan
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, People's Republic of China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| |
Collapse
|
22
|
Bottani M, Banfi G, Lombardi G. Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Common Solid Tumors: Focus on Lung, Breast, Prostate Cancers, and Osteosarcoma. J Clin Med 2019; 8:E1661. [PMID: 31614612 PMCID: PMC6833074 DOI: 10.3390/jcm8101661] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022] Open
Abstract
An early cancer diagnosis is essential to treat and manage patients, but it is difficult to achieve this goal due to the still too low specificity and sensitivity of classical methods (imaging, actual biomarkers), together with the high invasiveness of tissue biopsies. The discovery of novel, reliable, and easily collectable cancer markers is a topic of interest, with human biofluids, especially blood, as important sources of minimal invasive biomarkers such as circulating microRNAs (miRNAs), the most promising. MiRNAs are small non-coding RNAs and known epigenetic modulators of gene expression, with specific roles in cancer development/progression, which are next to be implemented in the clinical routine as biomarkers for early diagnosis and the efficient monitoring of tumor progression and treatment response. Unfortunately, several issues regarding their validation process are still to be resolved. In this review, updated findings specifically focused on the clinical relevance of circulating miRNAs as prognostic and diagnostic biomarkers for the most prevalent cancer types (breast, lung, and prostate cancers in adults, and osteosarcoma in children) are described. In addition, deep analysis of pre-analytical, analytical, and post-analytical issues still affecting the circulation of miRNAs' validation process and routine implementation is included.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Vita-Salute San Raffaele University, 20132 Milano, Italy.
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Dept. of Physiology and Pharmacology, Gdańsk University of Physical Education and Sport, Gdańsk, ul. Kazimierza Górskiego 1, 80-336 Pomorskie, Poland.
| |
Collapse
|
23
|
Gutierrez E, Cahatol I, Bailey CAR, Lafargue A, Zhang N, Song Y, Tian H, Zhang Y, Chan R, Gu K, Zhang ACC, Tang J, Liu C, Connis N, Dennis P, Zhang C. Regulation of RhoB Gene Expression during Tumorigenesis and Aging Process and Its Potential Applications in These Processes. Cancers (Basel) 2019; 11:cancers11060818. [PMID: 31200451 PMCID: PMC6627600 DOI: 10.3390/cancers11060818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
RhoB, a member of the Ras homolog gene family and GTPase, regulates intracellular signaling pathways by interfacing with epidermal growth factor receptor (EGFR), Ras, and phosphatidylinositol 3-kinase (PI3K)/Akt to modulate responses in cellular structure and function. Notably, the EGFR, Ras, and PI3K/Akt pathways can lead to downregulation of RhoB, while simultaneously being associated with an increased propensity for tumorigenesis. Functionally, RhoB, part of the Rho GTPase family, regulates intracellular signaling pathways by interfacing with EGFR, RAS, and PI3K/Akt/mammalian target of rapamycin (mTOR), and MYC pathways to modulate responses in cellular structure and function. Notably, the EGFR, Ras, and PI3K/Akt pathways can lead to downregulation of RhoB, while simultaneously being associated with an increased propensity for tumorigenesis. RHOB expression has a complex regulatory backdrop consisting of multiple histone deacetyltransferase (HDACs 1 and 6) and microRNA (miR-19a, -21, and -223)-mediated mechanisms of modifying expression. The interwoven nature of RhoB’s regulatory impact and cellular roles in regulating intracellular vesicle trafficking, cell motion, and the cell cycle lays the foundation for analyzing the link between loss of RhoB and tumorigenesis within the context of age-related decline in RhoB. RhoB appears to play a tissue-specific role in tumorigenesis, as such, uncovering and appreciating the potential for restoration of RHOB expression as a mechanism for cancer prevention or therapeutics serves as a practical application. An in-depth assessment of RhoB will serve as a springboard for investigating and characterizing this key component of numerous intracellular messaging and regulatory pathways that may hold the connection between aging and tumorigenesis.
Collapse
Affiliation(s)
- Eutiquio Gutierrez
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E 2nd Street, Pomona, CA 91766, USA.
- Department of Internal Medicine, Harbor-UCLA Medical Center, 1000 W Carson Street, Torrance, CA 90509, USA.
| | - Ian Cahatol
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E 2nd Street, Pomona, CA 91766, USA
- Department of Graduate Medical Education, Community Memorial Health System, 147 N Brent Street, Ventura, CA 93003, USA
| | - Cedric A R Bailey
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E 2nd Street, Pomona, CA 91766, USA
- Department of Pathology and Immunology, Washington University School of Medicine, 509 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Audrey Lafargue
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21231, USA
| | - Naming Zhang
- Department of Oncology, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Ying Song
- Department of Oncology, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Hongwei Tian
- Department of Oncology, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Yizhi Zhang
- Department of Oncology, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Ryan Chan
- Department of Oncology, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Kevin Gu
- Department of Oncology, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Angel C C Zhang
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - James Tang
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Chunshui Liu
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Nick Connis
- Department of Oncology, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Phillip Dennis
- Department of Oncology, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Chunyu Zhang
- Department of Oncology, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
MiR-19a as a prognostic indicator for cancer patients: a meta-analysis. Biosci Rep 2019; 39:BSR20182370. [PMID: 31015372 PMCID: PMC6522715 DOI: 10.1042/bsr20182370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
MiR-19a was aberrantly expressed in various types of cancers and was observed to be potentially associated with the prognosis of cancer patients. The present analysis aims to elucidate its precise predictive value in various human malignancies. Online electronic searches of PubMed, Web of Science (WOS), Embase in English and VIP, Wanfang, SinoMed, and the China National Knowledge Infrastructure (CNKI) in Chinese up to September 8, 2018 were conducted. As a result, in overall analysis, a significant association was identified between miR-19a levels and OS (HRs = 2.31, CI: 1.11–4.83). The relation of miR-19a expression to OS was further recognized by fixed model within the studies of sample size less than 150 (HRs = 1.68, CI: 1.35–2.08), NOS scores greater than or equal to 8 (HRs = 1.53, CI: 1.13–2.06) or less than 8 (HRs = 1.89, CI: 1.58–2.27), specimen derived from tumor (HRs = 1.73, CI: 1.42–2.12) or blood (HRs = 1.87, CI: 1.46–2.40) and the patients of osteosarcoma (HRs = 7.17, CI: 5.04–10.21). Sensitivity analyses revealed no significant results. The association between miR-19a expression level and DFS was also found to be significant (HRs = 2.03, CI: 1.13–3.66). Correlations between miR-19a levels and clinicopathological features were examined and revealed that lymph node metastasis was significantly associated with miR-19a expression levels (OR = 0.565, CI: 0.346–0.921). Summarily, the over expression of miR-19a was an underlying risk of poor prognosis in many human malignancies, especially in osteosarcoma. Moreover, elevated miR-19a expression was linked to the potential of lymph node metastasis.
Collapse
|
25
|
Liu S, Zhan Y, Luo J, Feng J, Lu J, Zheng H, Wen Q, Fan S. Roles of exosomes in the carcinogenesis and clinical therapy of non-small cell lung cancer. Biomed Pharmacother 2019; 111:338-346. [DOI: 10.1016/j.biopha.2018.12.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
|
26
|
MicroRNA in Lung Cancer Metastasis. Cancers (Basel) 2019; 11:cancers11020265. [PMID: 30813457 PMCID: PMC6406837 DOI: 10.3390/cancers11020265] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a hallmark of cancer, with distant metastasis frequently developing in lung cancer, even at initial diagnosis, resulting in poor prognosis and high mortality. However, available biomarkers cannot reliably predict cancer spreading sites. The metastatic cascade involves highly complicated processes including invasion, migration, angiogenesis, and epithelial-to-mesenchymal transition that are tightly controlled by various genetic expression modalities along with interaction between cancer cells and the extracellular matrix. In particular, microRNAs (miRNAs), a group of small non-coding RNAs, can influence the transcriptional and post-transcriptional processes, with dysregulation of miRNA expression contributing to the regulation of cancer metastasis. Nevertheless, although miRNA-targeted therapy is widely studied in vitro and in vivo, this strategy currently affords limited feasibility and a few miRNA-targeted therapies for lung cancer have entered into clinical trials to date. Advances in understanding the molecular mechanism of metastasis will thus provide additional potential targets for lung cancer treatment. This review discusses the current research related to the role of miRNAs in lung cancer invasion and metastasis, with a particular focus on the different metastatic lesions and potential miRNA-targeted treatments for lung cancer with the expectation that further exploration of miRNA-targeted therapy may establish a new spectrum of lung cancer treatments.
Collapse
|
27
|
Hon KW, Abu N, Ab Mutalib NS, Jamal R. miRNAs and lncRNAs as Predictive Biomarkers of Response to FOLFOX Therapy in Colorectal Cancer. Front Pharmacol 2018; 9:846. [PMID: 30127741 PMCID: PMC6088237 DOI: 10.3389/fphar.2018.00846] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy is one of the options for cancer treatment. FOLFOX is one of the widely used chemotherapeutic regimens used to treat primarily colorectal cancer and other cancers as well. However, the emergence of chemo-resistance clones during cancer treatment has become a critical challenge in the clinical setting. It is crucial to identify the potential biomarkers and therapeutics targets which could lead to an improvement in the success rate of the proposed therapies. Since non-coding RNAs have been known to be important players in the cellular system, the interest in their functional roles has intensified. Non-coding RNAs (ncRNAs) as regulators at the post-transcriptional level could be very promising to provide insights in overcoming chemo-resistance to FOLFOX. Hence, this mini review attempts to summarize the potential of ncRNAs correlating with chemo-sensitivity/resistance to FOLFOX.
Collapse
Affiliation(s)
- Kha Wai Hon
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Liu DT, Yao HR, Li YY, Song YY, Su MY. MicroRNA-19b promotes the migration and invasion of ovarian cancer cells by inhibiting the PTEN/AKT signaling pathway. Oncol Lett 2018; 16:559-565. [PMID: 29963131 PMCID: PMC6019979 DOI: 10.3892/ol.2018.8695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Local and systemic metastasis is the main reason for the poor survival rate of patients with ovarian cancer (OC). MicroRNAs (miRNAs/miRs) are short non-coding RNAs that serve critical roles in the initiation and progression of OC. The present study demonstrated that expression of miR-19b was significantly increased in OC tissues and cell lines. Analysis of clinicopathological features revealed that the increased expression of miR-19b was associated with advanced International Federation of Gynecology and Obstetrics stage and lymphatic metastasis of OC patients. Loss-of-function experiments demonstrated that the silencing of miR-19b reduced the migration and invasion of OVCAR-3 cells; contrarily, the overexpression of miR-19b facilitated the migration and invasion of CAOV-3 cells. Furthermore, miR-19b regulated the expression of phosphatase and tensin homolog (PTEN) and the activity of the PTEN/RAC serine/threonine-protein kinase pathway in vitro. Notably, the results of dual-luciferase reporter assays indicated that PTEN was a direct downstream target of miR-19b in OC. Taken together, the results of the current study demonstrated that miR-19b serves an oncogenic role in the progression of OC, and could potentially act as a biomarker and therapeutic target for OC patients.
Collapse
Affiliation(s)
- Dan-Tong Liu
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Hai-Rong Yao
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yan-Ying Li
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yang-Yang Song
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Meng-Ya Su
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
29
|
Bulgakova O, Zhabayeva D, Kussainova A, Pulliero A, Izzotti A, Bersimbaev R. miR-19 in blood plasma reflects lung cancer occurrence but is not specifically associated with radon exposure. Oncol Lett 2018; 15:8816-8824. [PMID: 29805621 PMCID: PMC5950512 DOI: 10.3892/ol.2018.8392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022] Open
Abstract
Radon is one of the most powerful carcinogens, particularly in terms of lung cancer onset and development. miRNAs may be considered not only as markers of the ongoing tumorigenesis but also as a hallmark of exposure to radiation, including radon and its progeny. Therefore, the purpose of the present study was to estimate the value of plasma miR-19b-3p level as the prospective marker of the response to radon exposure in lung cancer pathogenesis. A total of 136 subjects were examined, including 49 radon-exposed patients with lung cancer, 37 patients with lung cancer without radon exposure and 50 age/sex matched healthy controls. Total RNA from blood samples was extracted and used to detect miR-19b-3p expression via reverse transcription quantitative-polymerase chain reaction. The 2-ΔΔCq method was used to quantify the amount of relative miRNA. The plasma level of p53 protein was determined using a Human p53 ELISA kit. Plasma miR-19b-3p level was significantly higher in the patients with lung cancer groups, compared with the healthy control group (P<0.0001). No other statistically significant differences were determined in the expression level of plasma miR-19b-3p between patients diagnosed with lung cancer exposed to radon and not exposed to radon. The expression level of free circulating miR-19b-3p was higher in the group of non-smoking patients with lung cancer, compared with smokers with lung cancer. The miR-19b-3p was 1.4-fold higher in non-smokers than in smokers (P<0.05). No association between plasma levels of p53 protein and miR-19b-3p freely circulating in patients with lung cancer was observed. No other statistically significant differences were determined in the plasma p53 protein level between patients diagnosed with lung cancer exposed and not exposed to radon. These results indicated that detection of miR-19b-3p levels in plasma potentially could be exploited as a noninvasive method for the lung cancer diagnostics. However, this miRNA is not suitable as the precise marker for radon impact.
Collapse
Affiliation(s)
- Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Akmola 010008, Kazakhstan
| | - Dinara Zhabayeva
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Akmola 010008, Kazakhstan
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Akmola 010008, Kazakhstan
| | - Alessandra Pulliero
- Department of Health Sciences, University of Genoa, Genoa, I-16132 Liguria, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, I-16132 Liguria, Italy
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Akmola 010008, Kazakhstan
| |
Collapse
|
30
|
Wang Y, Zhao S, Zhu L, Zhang Q, Ren Y. MiR-19a negatively regulated the expression of PTEN and promoted the growth of ovarian cancer cells. Gene 2018; 670:166-173. [PMID: 29783075 DOI: 10.1016/j.gene.2018.05.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the most lethal malignancy of the women genital tract. Exploring novel factors involved in the development of ovarian cancer and characterizing the molecular mechanisms by which regulate the tumorigenesis of ovarian cancer are quite necessary. Here, we found that miR-19a was highly expressed in ovarian cancer tissues and cell lines. Overexpression of miR-19a promoted the viability of ovarian cancer cells, while down-regulation of miR-19a inhibited the growth of ovarian cancer cells. To further understand the underlying molecular mechanism of miR-19a in regulating ovarian cancer cell growth, the downstream targets of miR-19a were predicted. The bioinformatics analysis showed that the tumor suppressor PTEN was found as one of the targeting candidates of miR-19a. MiR-19a bound the 3'-UTR of PTEN and highly expressed miR-19a decreased both the mRNA and protein levels of PTEN in ovarian cancer cells. Overexpression of PTEN suppressed the promoting effect of miR-19a on regulating the growth of ovarian cancer cells. Notably, the expression of miR-19a and PTEN was inversely correlated in ovarian cancer tissues. These results demonstrated the potential oncogenic role of miR-19a in ovarian cancer, which suggested that miR-19a might be a promising target in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China.
| | - Shuzhen Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| | - Lihong Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| | - Quanle Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| | - Yanfang Ren
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| |
Collapse
|
31
|
Liu J, Jia Y, Jia L, Li T, Yang L, Zhang G. MicroRNA 615-3p Inhibits the Tumor Growth and Metastasis of NSCLC via Inhibiting IGF2. Oncol Res 2018; 27:269-279. [PMID: 29562959 PMCID: PMC7848428 DOI: 10.3727/096504018x15215019227688] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are essential regulators of cancer-associated genes at the posttranscriptional level, and their expression is altered in cancer tissues. Herein we sought to identify the regulation of miR-615-3p in NSCLC progression and its mechanism. miR-615-3p expression was significantly downregulated in NSCLC tissue compared to control normal tissue. Exogenous overexpression of miR-615-3p inhibited the growth and metastasis of NSCLC cells. In addition, the in vivo mouse xenograft model showed that overexpression of miR-615-3p inhibited NSCLC growth and lung metastasis, whereas decreased expression of miR-615-3p caused an opposite outcome. Furthermore, we revealed that insulin-like growth factor 2 (IGF2) expression was negatively correlated with the miR-615-3p level in NSCLC specimens, and IGF2 knockdown mimicked the effect of miR-615-3p inhibition on NSCLC cell proliferation, migration, and invasion. In addition, overexpression of IGF2 rescued the inhibition of miR-615-3p in NSCLC cells. Together, our results indicated that miR-615-3p played important roles in the regulation of NSCLC growth and metastasis by targeting IGF2.
Collapse
Affiliation(s)
- Jiangtao Liu
- Medical Oncology, Binzhou Central Hospital, Binzhou, Shandong, P.R. China
| | - Yanli Jia
- Medical Oncology, Binzhou Central Hospital, Binzhou, Shandong, P.R. China
| | - Lijuan Jia
- Medical Oncology, Binzhou Central Hospital, Binzhou, Shandong, P.R. China
| | - Tingting Li
- Department of Anesthesiology, Binzhou Central Hospital, Binzhou, Shandong, P.R. China
| | - Lei Yang
- Department of Cardiothoracic Surgery, Binzhou Central Hospital, Binzhou, Shandong, P.R. China
| | - Gongwen Zhang
- Department of Cardiothoracic Surgery, Binzhou Central Hospital, Binzhou, Shandong, P.R. China
| |
Collapse
|
32
|
Baumgartner U, Berger F, Hashemi Gheinani A, Burgener SS, Monastyrskaya K, Vassella E. miR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer. Mol Cancer 2018; 17:44. [PMID: 29455644 PMCID: PMC5817797 DOI: 10.1186/s12943-018-0781-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) mutations enable constitutive active downstream signaling of PI3K/AKT, KRAS/ERK and JAK/STAT pathways, and promote tumor progression by inducing uncontrolled proliferation, evasion of apoptosis and migration of non-small cell lung cancer (NSCLC). In addition, such EGFR mutations increase the susceptibility of patients with NSCLC to tyrosine kinase inhibitor (TKI) therapy, but treated patients will invariably relapse with resistant disease. A global understanding of underlying molecular mechanisms of EGFR signaling may improve the management of NSCLC patients. Methods microarray analysis was performed to identify PI3K/AKT-regulated miRNAs. Phosphoproteomic analysis and cell based assays were performed using NSCLC cell lines lentivirally transduced with anti-miR or miR overexpressing constructs. Results Here, we show that 17 miRNAs including members of the miR-17~ 92 cluster are dysregulated following PI3K/AKT inhibition of EGFR mutant NSCLC cells. Bioinformatics analysis revealed that dysregulated miRNAs act in a concerted manner to enhance the activity of the EGFR signaling pathway. These findings were closely mirrored by attenuation of miR-17~ 92 family member miR-19b in NSCLC cell lines which resulted in reduced phosphorylation of ERK, AKT and STAT and effector proteins in EGFR mutant NSCLC cells. Consistent with this finding, cell cycle progression, clonogenic growth and migration were reduced and apoptosis was enhanced. Co-treatment of NSCLC cells with the tyrosine kinase inhibitor (TKI) gefitinib and anti-miR-19b construct reduced migration and clonogenic growth in a synergistic manner suggesting that EGFR and miR-19b act together to control oncogenic processes. Serine/threonine phosphatase PP2A subunit PPP2R5E and BCL2L11 encoding BIM were identified as major targets of miR-19b by target validation assays. Consistent with this finding, PP2A activity was strongly enhanced in NSCLC transduced with anti-miR-19b construct, but not in cells co-transduced with anti-miR-19b and shPPP2R5E, suggesting that PPP2R5E is a major constituent of the PP2A complex. Accordingly, enhanced proliferation by miR-19b was due to targeting PPP2R5E. In contrast, apoptosis resistance was mainly due to targeting BCL2L11. Conclusion Our results provide insight into the importance of targeting PPP2R5E and BCL2L11 by miR-19b in oncogenic processes of NSCLC. Attenuation of miR-19b expression could potentially be exploited in adjuvant therapy of EGFR mutant NSCLC. Electronic supplementary material The online version of this article (10.1186/s12943-018-0781-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrich Baumgartner
- Institute of Pathology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Fabienne Berger
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Sabrina Sofia Burgener
- Institute for Virology and Immunology, Vetsuisse Faculty, University of Bern, Mittelhäusern, Bern, Switzerland
| | | | - Erik Vassella
- Institute of Pathology, University of Bern, Bern, Switzerland. .,Institut für Pathologie, University of Bern, Murtenstrasse 31, CH-3008, Bern, Switzerland.
| |
Collapse
|
33
|
Meng Q, Dai M, Nie X, Zhang W, Xu X, Li J, Mu H, Liu X, Qin L, Zhu X, Yan J, Zheng M. MicroRNA-19 contributes to the malignant phenotypes of osteosarcoma in vitro by targeting Pax6. Tumour Biol 2018; 40:1010428317744704. [PMID: 29345189 DOI: 10.1177/1010428317744704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This study was conducted to detect the expression of miR-19 and Pax6 (Paired box protein 6) in human osteosarcoma cells and the effects on biological characteristics of osteosarcoma cells. Quantitative real-time polymerase chain reaction was used to detect the expression of Pax6 and miR-19 in normal human osteoblasts (hFOB 1.19) and osteosarcoma cell lines (U2OS, Saos-2, and MG-63). Results showed that miR-19 was significantly upregulated in osteosarcoma cell lines compared with that in hFOB 1.19 cells, while the expression of Pax6 messenger RNA was significantly downregulated. Pax6 was defined as the target gene of miR-19 which was validated by luciferase reporter gene analysis. Results indicated that miR-19 had an interaction with Pax6 3'-untranslated region. At the same time, the protein expression of Pax6 was significantly decreased in the MG-63 cells transfected with miR-19 mimic and was notably enhanced in osteosarcoma MG-63 cells transfected with miR-19 inhibitor. These data suggested that Pax6 was a target of miR-19 in osteosarcoma MG-63 cells. The effects of miR-19 on the biological behavior of MG-63 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and Transwell assay. Results showed that the downregulation of miR-19 inhibited cell viability, reduced the percentage of cells in S phase and the number of cells passing through the Transwell chamber, and increased the number of apoptotic cells. Western blot analysis showed that the inhibition of miR-19 significantly increased the expression of epithelial proteins (E-cadherin and β-catenin) and decreased the expression of mesenchymal protein (Vimentin), extracellular signal-regulated kinase, and phosphorylated extracellular signal-regulated kinase in MG-63 cells. MiR-19 inhibitor and Pax6 small interfering RNA were simultaneously transfected into MG-63 cells. Results from 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and Transwell assay demonstrated that the inhibition of Pax6 expression in MG-63 cells could reverse the cell biological effects induced by the inhibition of miR-19 expression. Based on these findings, it was suggested that miR-19, upregulated in osteosarcoma cells, negatively regulated the expression of Pax6, which can promote the malignant phenotypes of osteosarcoma cells via activation of the extracellular signal-regulated kinase signaling pathways. Therefore, miR-19/Pax6 may offer potential for use as a target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Qingbing Meng
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Ming Dai
- 2 Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, P.R. China
| | - Xuejun Nie
- 3 Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Wensheng Zhang
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Xingli Xu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Jian Li
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Hongxin Mu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Xiaolan Liu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Ling Qin
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Xiaoqi Zhu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Jun Yan
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Minqian Zheng
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| |
Collapse
|
34
|
Zhang X, Li Y, Qi P, Ma Z. Biology of MiR-17-92 Cluster and Its Progress in Lung Cancer. Int J Med Sci 2018; 15:1443-1448. [PMID: 30443163 PMCID: PMC6216058 DOI: 10.7150/ijms.27341] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs, a class of short endogenous RNAs, acting as post-transcriptional regulators of gene expression, mostly silence gene expression via binding imperfectly matched sequences in the 3'UTR of target mRNA. MiR-17-92, a highly conserved gene cluster, has 6 members including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a. The miR-17-92 cluster, regarded as oncogene, is overexpressed in human cancers. Lung cancer is the leading cause of death all over the world. The molecular mechanism of lung cancer has been partly known at the levels of genes and proteins in last decade. However, new prognosis biomarkers and more target drugs should be developed in future. Therefore, noncoding RNAs, especially miRNAs, make them as new potentially clinical biomarkers for diagnosis and prognosis. In this review, we focus the current progress of miR-17-92 cluster in lung cancer.
Collapse
Affiliation(s)
- Xinju Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| | - Pengfei Qi
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| |
Collapse
|
35
|
Zhang TJ, Lin J, Zhou JD, Li XX, Zhang W, Guo H, Xu ZJ, Yan Y, Ma JC, Qian J. High bone marrow miR-19b level predicts poor prognosis and disease recurrence in de novo acute myeloid leukemia. Gene 2018; 640:79-85. [DOI: 10.1016/j.gene.2017.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/26/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023]
|
36
|
Fu F, Wan X, Wang D, Kong Z, Zhang Y, Huang W, Wang C, Wu H, Li Y. MicroRNA-19a acts as a prognostic marker and promotes prostate cancer progression via inhibiting VPS37A expression. Oncotarget 2017; 9:1931-1943. [PMID: 29416742 PMCID: PMC5788610 DOI: 10.18632/oncotarget.23026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/14/2017] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related deaths among males worldwide. However, the molecular mechanisms underlying the progression of PCa remain unclear. Despite several reported miRNAs in prostate cancer, these reports lacked system-level identification of differentially expressed miRNAs in large sample size. Moreover, it's still largely unknown how miRNAs result in tumorigenesis and progression of PCa. Therefore, by analyzing three public databases, we identified 16 upregulated miRNAs and 13 downregulated miRNAs, and validated miR-19a was one of the most upregulated miRNAs using qRT-PCR. The dual-luciferase reporter assays indicated VPS37A was a potential target of miR-19a. Functional assays revealed miR-19a served as an oncogene by inhibiting VPS37A. Notably, a significant inverse correlation of miR-19a and VPS37A expression was observed in PCa specimens. Moreover, miR-19a-high and VPS37A-low phenotypes were associated with poor prognosis with biochemical recurrence-free probability. In this study, we confirmed the oncogenic role of miR-19a via targeting VPS37A in PCa, identifying miR-19a and VPS37A as diagnosis and therapeutic biomarkers for PCa.
Collapse
Affiliation(s)
- Fangqiu Fu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Xuechao Wan
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Dan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Zhe Kong
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Yalong Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Wenhua Huang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Chenji Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai 200433, PR China
| | - Hai Wu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai 200433, PR China
| | - Yao Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
37
|
Sun Z, Liu Q, Hong H, Zhang H, Zhang T. miR-19 promotes osteosarcoma progression by targeting SOCS6. Biochem Biophys Res Commun 2017; 495:1363-1369. [PMID: 28986253 DOI: 10.1016/j.bbrc.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) play critical roles in cancer development and progression. This study investigated the effects of miR-19 in human osteosarcoma (OS) development. Here, we showed that miR-19 was frequently upregulated in OS tissues and cell lines. Moreover the expression of miR-19 was associated with TNM stage, metastasis, size and poor overall survival. Mechanistically, miR-19 dramatically suppressed OS growth in vitro and in vivo. Bioinformatics analyses predicted that SOCS6 is a potential target gene of miR-19 in OS, which was confirmed by luciferase-reporter assay. We also found that SOCS6 expression was downregulated and negatively correlated with miR-19 expression in OS tissues clinically. Moreover, ectopic SOCS6 could reverse miR-19 induced OS growth. Finally, JAK2/STAT3 signaling pathway involves miR-19/SOCS6-mediated OS progression. Together, our data provide important evidence for miR-19 mediated SOCS6 in OS growth and revealed miR-19/SOCS6/JAK2/STAT3 pathway as a potential therapeutic strategy for OS patients.
Collapse
Affiliation(s)
- Zhengwen Sun
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Qingxia Liu
- Maternity and Child Care Centers, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Huanyu Hong
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Haiguang Zhang
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Tongqing Zhang
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China.
| |
Collapse
|
38
|
Zhang K, Zhang L, Zhang M, Zhang Y, Fan D, Jiang J, Ye L, Fang X, Chen X, Fan S, Chao M, Liang C. Prognostic value of high-expression of miR-17-92 cluster in various tumors: evidence from a meta-analysis. Sci Rep 2017; 7:8375. [PMID: 28827775 PMCID: PMC5567103 DOI: 10.1038/s41598-017-08349-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
The prognostic value of miR-17-92 cluster high-expression in various tumors remains controversial. Therefore, we conducted this meta-analysis by searching literatures in PubMed, Embase, Cochrane Library, China Biology Medicine disc, China National Knowledge Infrastructure to identify eligible studies. Eventually, we analyzed 36 articles that examined 17 tumor types from 4965 patients. Consequently, high-expression of miR-17-92 cluster in various tumors was associated with unfavorable overall survival in both univariate (HR = 2.05, 95%CI: 1.58-2.65, P<0.001) and multivariate (HR = 2.14, 95%CI: 1.75-2.61, P<0.001) analyses. Likewise, similar results were found in different subgroups of country, test method, miR-17-92 cluster component, sample source and size. Additionally, high-expression of miR-17-92 cluster was linked with poor disease-free survival (Univariate: HR = 1.96, 95%CI: 1.55-2.48, P<0.001; Multivariate: HR = 2.18, 95%CI: 1.63-2.91, P<0.001), favorable progression-free survival (Univariate: HR = 0.36, 95%CI: 0.16-0.80, P = 0.012; Multivariate: HR = 1.55, 95%CI: 0.79-3.05, P = 0.201) and poor cancer specific survival in univariate rather than multivariate analyses (Univariate: HR = 1.77, 95%CI: 1.21-2.60, P = 0.004; Multivariate: HR = 1.77, 95%CI: 0.80-3.92, P = 0.160). However, no association of miR-17-92 cluster high-expression was detected with recurrence or relapse-free survival. In summary, this meta-analysis towards high-expression of miR-17-92 cluster has indicated poor prognosis of various cancers. Notably, future studies comprising large cohort size from multicenter are required to confirm our conclusions.
Collapse
Affiliation(s)
- Kaiping Zhang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China
| | - Yin Zhang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Dengxin Fan
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Jiabin Jiang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Liqin Ye
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Xiang Fang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China
| | - Min Chao
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China.
| |
Collapse
|
39
|
Zhu M, Huang Z, Zhu D, Zhou X, Shan X, Qi LW, Wu L, Cheng W, Zhu J, Zhang L, Zhang H, Chen Y, Zhu W, Wang T, Liu P. A panel of microRNA signature in serum for colorectal cancer diagnosis. Oncotarget 2017; 8:17081-17091. [PMID: 28177881 PMCID: PMC5370024 DOI: 10.18632/oncotarget.15059] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
Dysregulated expression of specific microRNAs (miRNAs) in serum has been recognised as promising diagnostic biomarkers for colorectal cancer (CRC). In the initial screening phase, a total of 32 differentially expressed miRNAs were selected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) based Exiqon panel with 3 CRC pool samples and 1 normal control (NC) pool. Using qRT-PCR, selected serum miRNAs were further confirmed in training (30 CRC VS. 30 NCs) and testing stages (136 CRC VS. 90 NCs). We identified that serum levels of miR-19a-3p, miR-21-5p and miR-425-5p were significantly higher in patients with CRC than in NCs. The areas under the receiver operating characteristic (ROC) curve of the three-miRNA panel were 0.86, 0.74 and 0.87 for the training, testing and the external validation stages (30 CRC VS. 18 NCs), respectively. Significantly, elevated expression of the three miRNAs was also observed in CRC tissues (n = 24). Furthermore, the expression levels of the three miRNAs were significantly elevated in exosomes from CRC serum samples (n = 10). In conclusion, we identified a serum three-miRNA panel for the diagnosis of CRC.
Collapse
Affiliation(s)
- Mingxia Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zebo Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Xin Zhou
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xia Shan
- Department of Respiration, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines and Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lirong Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Wenfang Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Lan Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huo Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Chen
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tongshan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ping Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Cancer Center of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
40
|
Prognostic role of miR-17-92 family in human cancers: evaluation of multiple prognostic outcomes. Oncotarget 2017; 8:69125-69138. [PMID: 28978185 PMCID: PMC5620325 DOI: 10.18632/oncotarget.19096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
Recent evidence indicates that miR-17–92 family might be an essential prognostic biomarker for human cancers. However, results are still inconsistent. We therefore performed a meta-analysis to evaluate the predictive role of miR-17–92 family in human cancer prognosis. We searched literatures published before March 31th, 2017 inPubMed, Cochrane and Embase databases. Twenty six studies were included in our analyses. The overall hazard ratios (HRs) showed that high expression level of miR-17-92 family was a predictor of poor overall survival (OS): adjusted HRs = 1.71, 95% confidence intervals (CIs): 1.39–2.11, p < 0.00001, and poor disease-free survival (DFS): adjusted HRs = 2.29, 95% CIs: 1.41–3.72, p = 0.0008. However, no association between miR-17-92 family expression and cancer progress-free survival (PFS) was found (p > 0.05). Subgroup analyses showed that high expression of miR-17-92 family was associated with poor OS (adjusted HRs = 1.89, 95% CIs: 1.43–2.49, p < 0.00001) and DFS (adjusted HRs = 2.83, 95% CIs: 1.59–5.04, p = 0.0003) among the Asian, and no association was found for the Caucasian (p > 0.05). Besides, the HRs of miR-17-92 family high expression in tissue and serum samples was 1.68 (1.35–2.09) and 2.20 (1.08–4.46) for OS, and 1.73 (0.80–3.74) and 3.37 (2.25–5.02) for DFS. It also found that high expression of miR-17-92 family predicted a poor OS in breast cancer, esophageal squamous cell carcinoma, lymphoma and other cancers. Findings suggest that miR-17-92 family can be an effective predictor for prognosis prediction in cancer patients.
Collapse
|
41
|
miR-19a contributes to gefitinib resistance and epithelial mesenchymal transition in non-small cell lung cancer cells by targeting c-Met. Sci Rep 2017; 7:2939. [PMID: 28592790 PMCID: PMC5462753 DOI: 10.1038/s41598-017-01153-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
Gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is used as a first-line treatment for advanced non-small cell lung cancer (NSCLC). However, most NSCLC patients inevitably develop gefitinib resistance, and the mechanisms underlying this resistance are not fully understood. In this study, we show that miR-19a is significantly down-regulated in gefitinib-resistant NSCLC cell lines compared with gefitinib-sensitive cell lines. In addition, the down-regulation of miR-19a suppressed the expression of epithelial markers but induced the expression levels of mesenchymal markers. A mechanistic analysis revealed that miR-19a regulated c-Met expression by directly targeting the c-Met 3′UTR. Overexpression of miR-19a decreased c-Met expression and re-sensitized gefitinib-resistant NSCLC cells in vitro and in vivo. Consistent with the in vitro findings, the miR-19a serum level was significantly decreased in NSCLC patients with acquired gefitinib resistance compared with the level observed prior to the acquisition of resistance in each patient, indicating that miR-19a expression may be a valuable biomarker for the prediction of acquired gefitinib resistance in a clinical setting. Our data demonstrate that the miR-19a/c-Met pathway plays a critical role in acquired resistance to gefitinib and that the manipulation of miR-19a might provide a therapeutic strategy for overcoming acquired gefitinib resistance.
Collapse
|
42
|
Zhu J, Wang S, Chen Y, Li X, Jiang Y, Yang X, Li Y, Wang X, Meng Y, Zhu M, Ma X, Huang C, Wu R, Xie C, Geng S, Wu J, Zhong C, Han H. miR-19 targeting of GSK3β mediates sulforaphane suppression of lung cancer stem cells. J Nutr Biochem 2017; 44:80-91. [PMID: 28431267 DOI: 10.1016/j.jnutbio.2017.02.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/21/2017] [Accepted: 02/25/2017] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) play a central role in the development of cancer. The canonical Wnt/β-catenin pathway is critical for maintaining stemness of CSCs. Phytochemicals from dietary compounds possess anti-CSCs properties and have been characterized as promising therapeutic agents for the prevention and treatment of many cancers. To date, the involvement and function of miR-19, a key oncogenic miRNA, in regulating Wnt/β-catenin pathway and lung CSCs has not been defined. Meanwhile, the effect of sulforaphane (SFN) on lung CSCs also remains to be elucidated. Here, we reported that lung CSCs up-regulated miR-19a and miR-19b expression. Overexpression of miR-19a/19b enhanced the ability of tumorsphere formation, up-regulated the expression of lung CSCs markers, increased Wnt/β-catenin pathway activation and β-catenin/TCF transcriptional activity in lung CSCs. In contrary, down-regulation of miR-19 suppressed lung CSCs activity and Wnt/β-catenin activation. We further revealed that miR-19 activated Wnt/β-catenin pathway by directly targeting GSK3β, the key negative modulator of this pathway. Moreover, we showed that SFN exhibited inhibitory effect on lung CSCs through suppressing miR-19 and Wnt/β-catenin pathway. Taken together, these data illustrate the role of miR-19 in regulating lung CSCs traits and miR-19/GSK3β/β-catenin axis in SFN intervention of lung CSCs. Findings from this study could provide important new insights into the molecular mechanisms of lung CSCs regulation as well as its target intervention.
Collapse
Affiliation(s)
- Jianyun Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shijia Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ye Jiang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xue Yang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoqian Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yu Meng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Ma
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cong Huang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Hongyu Han
- Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
43
|
Elevated expression of microRNA-19a predicts a poor prognosis in patients with osteosarcoma. Pathol Res Pract 2016; 213:194-198. [PMID: 28214202 DOI: 10.1016/j.prp.2016.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022]
Abstract
MicroRNA (miR)-19a, a member of the miR-17-92 cluster, functions as an oncomiRNA in multiple kinds of cancers. However, its involvement in human osteosarcomas remains unclear. In this study, to analyze the expression pattern of miR-19a and to investigate its clinical implication in human osteosarcomas, quantitative reverse-transcription polymerase chain reaction was performed to detect expression levels of miR-19a in 166 self-pairs of osteosarcoma and noncancerous bone tissues. Associations between miR-19a expression and various clinicopathological parameters and patients' prognosis of osteosarcomas were further evaluated. As a results, miR-19a expression in osteosarcoma tissues was significantly higher than that in corresponding noncancerous bone tissues (P<0.001). Osteosarcoma patients with high miR-19a expression more frequently had large tumor size (P=0.03), advanced clinical stage (P=0.01), positive distant metastasis (P=0.008) and poor response to chemotherapy (P=0.01) than those with low miR-19a expression. Additionally, kaplan-Meier analysis showed that both overall and disease-free survivals of osteosarcoma patients with high miR-19a expression were shorter than those with low miR-19a expression (both P<0.001). Further multivariate analysis identified miR-19a expression as an independent prognostic factor for both overall (P=0.001) and disease-free (P=0.006) survivals. In conclusion, the aberrant expression of miR-19a may play a crucial role in development and progression of human osteosarcomas. MiR-19a may act as a novel prognostic marker for patients with this malignancy.
Collapse
|
44
|
Pastuszak-Lewandoska D, Kordiak J, Czarnecka KH, Migdalska-Sęk M, Nawrot E, Domańska-Senderowska D, Kiszałkiewicz JM, Antczak A, Górski P, Brzeziańska-Lasota E. Expression analysis of three miRNAs, miR-26a, miR-29b and miR-519d, in relation to MMP-2 expression level in non-small cell lung cancer patients: a pilot study. Med Oncol 2016; 33:96. [PMID: 27447710 DOI: 10.1007/s12032-016-0815-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/16/2016] [Indexed: 02/06/2023]
Abstract
Lung cancer is the most common cause of death in men and second only to breast cancer in women. MicroRNAs (miRNAs) are involved in tumorigenesis and function as oncogenes or tumor suppressor genes. Among other genes, miRNAs regulate matrix metalloproteinases (MMPs), the proteolytic enzymes playing a significant role in the degradation of extracellular matrix, enhancing tumor invasion and metastasis. The aim of the study was to evaluate the expression levels of selected miRNAs: miR-26a, miR-29b and miR-519d, and their target gene, matrix metalloproteinase-2 (MMP-2) in patients with non-small cell lung cancer (NSCLC). The results were correlated with tumor staging, NSCLC histopathological subtypes and patients' demographical features to assess the possible diagnostic/prognostic value of the studied miRNAs and MMP-2. Total RNA was isolated from 38 NSCLC tissue samples, and the expression analysis was performed using TaqMan(®) probes in qPCR assay. The results indicated underexpression of selected miRNAs and overexpression of MMP-2. The decrease in miRNA-29b expression was statistically significant and differentiated NSCLC histopathological subtypes. Additionally, statistically significant negative correlation was found between MMP-2 expression and its regulatory miR-26a. There are very few studies reporting miRNA-MMPs analysis on mRNA level in lung cancer, and no similar reports are available from Polish population. The results of our pilot study indicated the diagnostic potential of miR-29b and MMP-2, an inverse association between miR-26a and MMP-2, and proved the role of MMP-2 and the studied miRNAs in lung carcinogenesis. Further studies are needed to verify their potential usefulness for the treatment of lung cancer.
Collapse
Affiliation(s)
- D Pastuszak-Lewandoska
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - J Kordiak
- Department of Chest Surgery, General and Oncological Surgery University Hospital No. 2, Medical University of Lodz, Lodz, Poland
| | - K H Czarnecka
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland
| | - M Migdalska-Sęk
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland
| | - E Nawrot
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland
| | - D Domańska-Senderowska
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland
| | - J M Kiszałkiewicz
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland
| | - A Antczak
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland
| | - P Górski
- Department of Pneumology and Allergology, Medical University of Lodz, Lodz, Poland
| | - E Brzeziańska-Lasota
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland
| |
Collapse
|
45
|
Hu W, Jin P, Ding C, Liu W. miR-19a/b modulates lung cancer cells metastasis through suppression of MXD1 expression. Oncol Lett 2016; 12:1901-1905. [PMID: 27588137 PMCID: PMC4998008 DOI: 10.3892/ol.2016.4881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence has shown that microRNA (miRNA) is extensively involved in the pathophysiology of lung cancer. Microarray data demonstrated the increasing levels of miR-19a in the peripheral blood from patients suffering from lung cancer, which is closely associated with poor prognosis of lung cancer. However, the underlying molecular mechanism of miR-19a remains to be determined. The results of the present study showed a higher expression of miR-19a compared with normal bronchial epithelial cells. Furthermore, lentivirus vectors were constructed to establish cell lines that overexpressed and knocked out miR-19a in order to study the role of miR-19a on the metastasis and proliferation of lung cancer cells. Investigation into the underlying mechanism of miR-19a, revealed that MXD1 may be the key gene targeting miR-19a, participating in the process of proliferation and metastasis of lung cancer cells.
Collapse
Affiliation(s)
- Wenxia Hu
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050012, P.R. China
| | - Pule Jin
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050012, P.R. China
| | - Cuimin Ding
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050012, P.R. China
| | - Wei Liu
- Department of Oncology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
46
|
Klupp F, Neumann L, Kahlert C, Diers J, Halama N, Franz C, Schmidt T, Koch M, Weitz J, Schneider M, Ulrich A. Serum MMP7, MMP10 and MMP12 level as negative prognostic markers in colon cancer patients. BMC Cancer 2016; 16:494. [PMID: 27431388 PMCID: PMC4950722 DOI: 10.1186/s12885-016-2515-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 06/28/2016] [Indexed: 12/21/2022] Open
Abstract
Background Matrixmetalloproteinases (MMPs) comprise a family of zinc-dependent endopeptidases which are involved in angiogenesis, tumor invasion and metastatic formation. Up to date, the prognostic relevance of MMPs in serum of patients with colon cancer remains unknown. Thus, we wanted to assess an expression pattern of MMPs in a homogenous cohort of colon cancer patients to assess their potential as prognostic biomarkers. Methods Differences in the expression pattern of MMP7, MMP10 and MMP12 in 78 serum specimens of patients with an adenocarcinoma of the colon and serum specimens of a healthy control group were assessed using Luminex-100 technologies. Subsequently, we correlated these results with histopathological and clinical data of the patients. Results Luminex based expression analysis revealed a significant overexpression of MMP7 and an overexpression of MMP10 and MMP12 in the sera of colon cancer patients compared to the healthy control group. Patients with vascular invasion showed a significantly higher MMP12 expression than V0-staged patients. Moreover overexpression of MMP7, MMP10 and MMP12 in colon cancer patients´ sera displayed a significantly impaired overall survival. Multivariate analysis revealed high MMP10 serum levels to be an independent adverse prognostic marker in colon cancer patients. Conclusions Expression patterns of MMP7, MMP10 and MMP12 in colon cancer patients´ sera are different compared to serum specimens of healthy individuals. Furthermore, overexpression of MMP7, MMP10 and MMP12 in colon cancer patients´ sera correlates with a dismal prognosis and may help to stratify patients into different risk groups. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2515-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fee Klupp
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| | - Lena Neumann
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Johannes Diers
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Niels Halama
- National Center for Tumor diseases, Medical Oncology and Internal medicine VI, Tissue Imaging and Analysis Center, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Clemens Franz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Moritz Koch
- Department of Visceral, Thoracic and Vascular Surgery, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Juergen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| |
Collapse
|
47
|
Larrea E, Sole C, Manterola L, Goicoechea I, Armesto M, Arestin M, Caffarel MM, Araujo AM, Araiz M, Fernandez-Mercado M, Lawrie CH. New Concepts in Cancer Biomarkers: Circulating miRNAs in Liquid Biopsies. Int J Mol Sci 2016; 17:ijms17050627. [PMID: 27128908 PMCID: PMC4881453 DOI: 10.3390/ijms17050627] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
The effective and efficient management of cancer patients relies upon early diagnosis and/or the monitoring of treatment, something that is often difficult to achieve using standard tissue biopsy techniques. Biological fluids such as blood hold great possibilities as a source of non-invasive cancer biomarkers that can act as surrogate markers to biopsy-based sampling. The non-invasive nature of these “liquid biopsies” ultimately means that cancer detection may be earlier and that the ability to monitor disease progression and/or treatment response represents a paradigm shift in the treatment of cancer patients. Below, we review one of the most promising classes of circulating cancer biomarkers: microRNAs (miRNAs). In particular, we will consider their history, the controversy surrounding their origin and biology, and, most importantly, the hurdles that remain to be overcome if they are really to become part of future clinical practice.
Collapse
Affiliation(s)
- Erika Larrea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Carla Sole
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Lorea Manterola
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Ibai Goicoechea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Armesto
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Arestin
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María M Caffarel
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Angela M Araujo
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Araiz
- Hematology Department, Donostia Hospital, 20014 San Sebastián, Spain.
| | | | - Charles H Lawrie
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
48
|
Lee YS, Kim JK, Ryu SW, Bae SJ, Kwon K, Noh YH, Kim SY. Integrative meta-analysis of multiple gene expression profiles in acquired gemcitabine-resistant cancer cell lines to identify novel therapeutic biomarkers. Asian Pac J Cancer Prev 2016; 16:2793-800. [PMID: 25854364 DOI: 10.7314/apjcp.2015.16.7.2793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In molecular-targeted cancer therapy, acquired resistance to gemcitabine is a major clinical problem that reduces its effectiveness, resulting in recurrence and metastasis of cancers. In spite of great efforts to reveal the overall mechanism of acquired gemcitabine resistance, no definitive genetic factors have been identified that are absolutely responsible for the resistance process. Therefore, we performed a cross-platform meta-analysis of three publically available microarray datasets for cancer cell lines with acquired gemcitabine resistance, using the R-based RankProd algorithm, and were able to identify a total of 158 differentially expressed genes (DEGs; 76 up- and 82 down-regulated) that are potentially involved in acquired resistance to gemcitabine. Indeed, the top 20 up- and down-regulated DEGs are largely associated with a common process of carcinogenesis in many cells. For the top 50 up- and down-regulated DEGs, we conducted integrated analyses of a gene regulatory network, a gene co-expression network, and a protein-protein interaction network. The identified DEGs were functionally enriched via Gene Ontology hierarchy and Kyoto Encyclopedia of Genes and Genomes pathway analyses. By systemic combinational analysis of the three molecular networks, we could condense the total number of DEGs to final seven genes. Notably, GJA1, LEF1, and CCND2 were contained within the lists of the top 20 up- or down-regulated DEGs. Our study represents a comprehensive overview of the gene expression patterns associated with acquired gemcitabine resistance and theoretical support for further clinical therapeutic studies.
Collapse
Affiliation(s)
- Young Seok Lee
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Republic of Korea E-mail :
| | | | | | | | | | | | | |
Collapse
|
49
|
Chu G, Zhang J, Chen X. Serum level of microRNA-147 as diagnostic biomarker in human non-small cell lung cancer. J Drug Target 2015; 24:613-7. [PMID: 26581116 DOI: 10.3109/1061186x.2015.1116539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objectives In this study, we intended to examine the gene expression level and the clinical significance of microRNA-147 (miR-147) in cancer tissues and sera of patients with non-small cell lung cancer (NSCLC). Methods Quantitative real-time PCR (qRT-PCR) was used to investigate the expression levels of miR-147 in 32 paired NSCLC tissues and their adjacent normal lung tissues, sera of 122 control and 87 NSCLC patients. The correlation of serum miR-147 expression level with clinicopathological characteristics, and the prognosis of NSCLC patients was statistically evaluated. Results MiR-147 was significantly down-regulated in NSCLC tissues than in paired adjacent normal tissues, and in sera of NSCLC patients than in sera of control patients. In addition, serum miR-147 was markedly down-regulated in advanced NSCLC patients and the patients with lymph node metastasis (LNM). Low serum miR-147 expression level was found to be significantly correlated with tumor, lymph node, metastasis stage, LNM, and tumor size. Statistical analysis showed that patients with low serum miR-147 had much worse overall survival, and low serum miR-147 expression level was an independent prognostic factor for poor prognosis for NSCLC. Conclusion Low serum miR-147 expression level may be a useful biomarker for patients with NSCLC.
Collapse
Affiliation(s)
- Guangmin Chu
- a Department of Pathology , the Affiliated Cancer Hospital, Zhengzhou University , Zhengzhou , China
| | - Jianbo Zhang
- a Department of Pathology , the Affiliated Cancer Hospital, Zhengzhou University , Zhengzhou , China
| | - Xiaobing Chen
- b Department of Oncology , the Affiliated Cancer Hospital, Zhengzhou University , Zhengzhou , China
| |
Collapse
|
50
|
Vychytilova-Faltejskova P, Slaby O. Circulating Blood-Borne microRNAs as Biomarkers in Solid Tumors. ACTA ACUST UNITED AC 2015; 106:75-122. [PMID: 26608200 DOI: 10.1007/978-3-0348-0955-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the major challenges in cancer research is the identification of stable biomarkers that could be routinely measured in easily accessible samples. Human blood and other body fluids represent rich sources for the identification of novel biomarkers. It is apparent that the availability of these biomarkers would improve an early detection of asymptomatic disease and the clinical management of cancer. MicroRNAs have been described to be present in various types of body fluids including cell-free serum and plasma. These days, the involvement of microRNAs in molecular pathology of cancer is well established. Moreover, it seems that these molecules could be optimal noninvasive biomarkers owing to their high stability under storage and handling conditions and high sensitivity and specificity in various diseases. To date, more than 100 circulating microRNAs with the potential to serve as novel diagnostic, prognostic, or predictive biomarkers for different types of cancers have been identified, and this number is still increasing. However, there are major discrepancies in the findings by different research groups, and few commonly altered microRNAs have been reported in these studies. Further studies on large cohorts using uniform methodology are warranted to establish the clinical applicability of circulating microRNAs for solid tumors. Here, we summarize the tumor-specific profiles of blood-borne microRNAs and discuss their potential utility for personalized medicine of solid tumors.
Collapse
Affiliation(s)
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|