1
|
Zhang H, Sun F, Jiang S, Yang F, Dong X, Liu G, Wang M, Li Y, Su M, Wen Z, Yu C, Fan C, Li X, Zhang Z, Yang L, Li B. METTL protein family: focusing on the occurrence, progression and treatment of cancer. Biomark Res 2024; 12:105. [PMID: 39289775 PMCID: PMC11409517 DOI: 10.1186/s40364-024-00652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like protein is a ubiquitous enzyme-like protein in the human body, with binding domains for nucleic acids, proteins and other small molecules, and plays an important role in a variety of biological behaviours in normal organisms and diseases, characterised by the presence of a methyltransferase-like structural domain and a structurally conserved SAM-binding domain formed by the seven-stranded β-fold structure in the center of the protein. With the deepening of research, the METTL protein family has been found to be abnormally expressed in a variety of tumor diseases, and the clarification of its relationship with tumor diseases can be used as a molecular therapeutic target and has an important role in the prognosis of tumors. In this paper, we review the structure, biological process, immunotherapy, drug-targeted therapy, and markers of the METTL protein family to provide new ideas for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Fulin Sun
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Streer, Weifang, 261041, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenkai Fan
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
2
|
Xie H, Hong T, Liu W, Jia X, Wang L, Zhang H, Xu C, Zhang X, Li WL, Wang Q, Yin C, Lv X. Interpretable machine learning-based clinical prediction model for predicting lymph node metastasis in patients with intrahepatic cholangiocarcinoma. BMC Gastroenterol 2024; 24:137. [PMID: 38641789 PMCID: PMC11031954 DOI: 10.1186/s12876-024-03223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/05/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVE Prediction of lymph node metastasis (LNM) for intrahepatic cholangiocarcinoma (ICC) is critical for the treatment regimen and prognosis. We aim to develop and validate machine learning (ML)-based predictive models for LNM in patients with ICC. METHODS A total of 345 patients with clinicopathological characteristics confirmed ICC from Jan 2007 to Jan 2019 were enrolled. The predictors of LNM were identified by the least absolute shrinkage and selection operator (LASSO) and logistic analysis. The selected variables were used for developing prediction models for LNM by six ML algorithms, including Logistic regression (LR), Gradient boosting machine (GBM), Extreme gradient boosting (XGB), Random Forest (RF), Decision tree (DT), Multilayer perceptron (MLP). We applied 10-fold cross validation as internal validation and calculated the average of the areas under the receiver operating characteristic (ROC) curve to measure the performance of all models. A feature selection approach was applied to identify importance of predictors in each model. The heat map was used to investigate the correlation of features. Finally, we established a web calculator using the best-performing model. RESULTS In multivariate logistic regression analysis, factors including alcoholic liver disease (ALD), smoking, boundary, diameter, and white blood cell (WBC) were identified as independent predictors for LNM in patients with ICC. In internal validation, the average values of AUC of six models ranged from 0.820 to 0.908. The XGB model was identified as the best model, the average AUC was 0.908. Finally, we established a web calculator by XGB model, which was useful for clinicians to calculate the likelihood of LNM. CONCLUSION The proposed ML-based predicted models had a good performance to predict LNM of patients with ICC. XGB performed best. A web calculator based on the ML algorithm showed promise in assisting clinicians to predict LNM and developed individualized medical plans.
Collapse
Affiliation(s)
- Hui Xie
- Department of General Surgery, Yan 'an People's Hospital, Yan 'an, China
| | - Tao Hong
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Wencai Liu
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaodong Jia
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Le Wang
- Department of thoracic surgery, the first affiliated hospital of Dalian Medical University, Dalian, China
| | - Huan Zhang
- Graduate School of Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Chan Xu
- State Key Laboratory of MolecularVaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoke Zhang
- Graduate School of Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Wen-Le Li
- State Key Laboratory of MolecularVaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Quan Wang
- Radiation Oncology Department, Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Xu Lv
- Department of General Surgery, Yixing Cancer Hospital, Yixing, Jiangsu, 214200, China.
| |
Collapse
|
3
|
Zhang H, Yang J, Song Q, Ding X, Sun F, Yang L. UBA3 promotes the occurrence and metastasis of intrahepatic cholangiocarcinoma through MAPK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:199-209. [PMID: 38298057 PMCID: PMC10984854 DOI: 10.3724/abbs.2024014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 02/02/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) accounts for approximately 15% of primary liver cancers, and the incidence rate has been increasing in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to identify signature genes. The aim of this study is to screen the signature genes of ICC and find the potential target for the treatment of ICC. We find that UBA3 is highly expressed in ICC, and knockdown of UBA3 inhibits ICC proliferation, invasion and migration. Mechanistic experiments show that UBA3 promotes ICC proliferation, invasion and migration by affecting ANXA2 through the MAPK signaling pathway. UBA3 is a target of bufalin, and bufalin targeting UBA3 inhibits ICC development and progression through the MAPK signaling pathway. In conclusion, our study shows that bufalin inhibits ICC by targeting UBA3, which has emerged as a new biomarker and potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell BiologyBasic Medical CollegeQingdao UniversityQingdao266071China
| | - Jiahua Yang
- School of Basic MedicineQingdao UniversityQingdao266071China
- Institute of Brain Science and DiseaseShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological DisordersQingdao UniversityQingdao266071China
| | - Qinghang Song
- College of MedicineQingdao UniversityQingdao266071China
| | - Xiaoyan Ding
- Department of Genetics and Cell BiologyBasic Medical CollegeQingdao UniversityQingdao266071China
| | - Fulin Sun
- College of MedicineQingdao UniversityQingdao266071China
| | - Lina Yang
- Department of Genetics and Cell BiologyBasic Medical CollegeQingdao UniversityQingdao266071China
| |
Collapse
|
4
|
Ruan J, Xu S, Chen R, Qu W, Li Q, Ye C, Wu W, Jiang Q, Yan F, Shen E, Chu Q, Jia Y, Zhang X, Fu W, Chen J, Timko MP, Zhao P, Fan L, Shen Y. EMLI-ICC: an ensemble machine learning-based integration algorithm for metastasis prediction and risk stratification in intrahepatic cholangiocarcinoma. Brief Bioinform 2022; 23:6762744. [PMID: 36259363 DOI: 10.1093/bib/bbac450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
Robust strategies to identify patients at high risk for tumor metastasis, such as those frequently observed in intrahepatic cholangiocarcinoma (ICC), remain limited. While gene/protein expression profiling holds great potential as an approach to cancer diagnosis and prognosis, previously developed protocols using multiple diagnostic signatures for expression-based metastasis prediction have not been widely applied successfully because batch effects and different data types greatly decreased the predictive performance of gene/protein expression profile-based signatures in interlaboratory and data type dependent validation. To address this problem and assist in more precise diagnosis, we performed a genome-wide integrative proteome and transcriptome analysis and developed an ensemble machine learning-based integration algorithm for metastasis prediction (EMLI-Metastasis) and risk stratification (EMLI-Prognosis) in ICC. Based on massive proteome (216) and transcriptome (244) data sets, 132 feature (biomarker) genes were selected and used to train the EMLI-Metastasis algorithm. To accurately detect the metastasis of ICC patients, we developed a weighted ensemble machine learning method based on k-Top Scoring Pairs (k-TSP) method. This approach generates a metastasis classifier for each bootstrap aggregating training data set. Ten binary expression rank-based classifiers were generated for detection of metastasis separately. To further improve the accuracy of the method, the 10 binary metastasis classifiers were combined by weighted voting based on the score from the prediction results of each classifier. The prediction accuracy of the EMLI-Metastasis algorithm achieved 97.1% and 85.0% in proteome and transcriptome datasets, respectively. Among the 132 feature genes, 21 gene-pair signatures were developed to establish a metastasis-related prognosis risk-stratification model in ICC (EMLI-Prognosis). Based on EMLI-Prognosis algorithm, patients in the high-risk group had significantly dismal overall survival relative to the low-risk group in the clinical cohort (P-value < 0.05). Taken together, the EMLI-ICC algorithm provides a powerful and robust means for accurate metastasis prediction and risk stratification across proteome and transcriptome data types that is superior to currently used clinicopathological features in patients with ICC. Our developed algorithm could have profound implications not just in improved clinical care in cancer metastasis risk prediction, but also more broadly in machine-learning-based multi-cohort diagnosis method development. To make the EMLI-ICC algorithm easily accessible for clinical application, we established a web-based server for metastasis risk prediction (http://ibi.zju.edu.cn/EMLI/).
Collapse
Affiliation(s)
- Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, People's Republic of China
| | - Shuaishuai Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, People's Republic of China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, People's Republic of China
| | - Wenxin Qu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, People's Republic of China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, People's Republic of China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, People's Republic of China
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, People's Republic of China
| | - Qi Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, People's Republic of China
| | - Feifei Yan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, People's Republic of China
| | - Enhui Shen
- Institute of Bioinformatics, Zhejiang University, People's Republic of China
| | - Qinjie Chu
- Institute of Bioinformatics, Zhejiang University, People's Republic of China
| | - Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, People's Republic of China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, People's Republic of China
| | - Wenguang Fu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, People's Republic of China
| | - Jinzhang Chen
- Department of Oncology, Nanfang Hospital, Southern medical University, People's Republic of China
| | - Michael P Timko
- Lewis and Clark Professor of Biology, Department of Biology, and professor of the Public Health Sciences, University of Virginia, U.S.A
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, People's Republic of China
| | - Longjiang Fan
- Institute of Bioinformatics, Zhejiang University, People's Republic of China
| | - Yifei Shen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, & Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, & Institute of Laboratory Medicine, Zhejiang University, People's Republic of China
| |
Collapse
|
5
|
Mancarella S, Serino G, Gigante I, Cigliano A, Ribback S, Sanese P, Grossi V, Simone C, Armentano R, Evert M, Calvisi DF, Giannelli G. CD90 is regulated by notch1 and hallmarks a more aggressive intrahepatic cholangiocarcinoma phenotype. J Exp Clin Cancer Res 2022; 41:65. [PMID: 35172861 PMCID: PMC8851853 DOI: 10.1186/s13046-022-02283-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrahepatic Cholangiocarcinoma (iCCA) is characterized by a strong stromal reaction playing a role in tumor progression. Thymus cell antigen 1 (THY1), also called Cluster of Differentiation 90 (CD90), is a key regulator of cell-cell and cell-matrix interaction. In iCCA, CD90 has been reported to be associated with a poor prognosis. In an iCCA PDX model, we recently found that CD90 was downregulated in mice treated with the Notch γ-secretase inhibitor Crenigacestat. The study aims to investigate the role of CD90 in relation to the NOTCH pathway. METHODS THY1/CD90 gene and protein expression was evaluated in human iCCA tissues and xenograft models by qRT-PCR, immunohistochemistry, and immunofluorescence. Notch1 inhibition was achieved by siRNA. THY1/CD90 functions were investigated in xenograft models built with HuCCT1 and KKU-M213 cell lines, engineered to overexpress or knockdown THY1, respectively. RESULTS CD90 co-localized with EPCAM, showing its epithelial origin. In vitro, NOTCH1 silencing triggered HES1 and THY1 down-regulation. RBPJ, a critical transcriptional regulator of NOTCH signaling, exhibited putative binding sites on the THY1 promoter and bound to the latter, implying CD90 as a downstream NOTCH pathway effector. In vivo, Crenigacestat suppressed iCCA growth and reduced CD90 expression in the PDX model. In the xenograft model, Crenigacestat inhibited tumor growth of HuCCT1 cells transfected to overexpress CD90 and KKU-M213 cells constitutively expressing high levels of CD90, while not affecting the growth of HuCCT1 control cells and KKU-M213 depleted of CD90. In an iCCA cohort, patients with higher expression levels of NOTCH1/HES1/THY1 displayed a significantly shorter survival. CONCLUSIONS iCCA patients with higher NOTCH1/HES1/THY1 expression have the worst prognosis, but they are more likely to benefit from Notch signaling inhibition. These findings represent the scientific rationale for testing NOTCH1 inhibitors in clinical trials, taking the first step toward precision medicine for iCCA.
Collapse
Affiliation(s)
- Serena Mancarella
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Grazia Serino
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Antonio Cigliano
- Institute of Pathology, University of Regensburg, 93053, Regensburg, Germany
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, 17489, Greifswald, Germany
| | - Paola Sanese
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Valentina Grossi
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Cristiano Simone
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Raffaele Armentano
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, 93053, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, 93053, Regensburg, Germany
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy.
| |
Collapse
|
6
|
Kang Z, Guo L, Zhu Z, Qu R. Identification of prognostic factors for intrahepatic cholangiocarcinoma using long non-coding RNAs-associated ceRNA network. Cancer Cell Int 2020; 20:315. [PMID: 32694937 PMCID: PMC7364620 DOI: 10.1186/s12935-020-01388-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background Accumulating amount of evidence has highlighted the important roles of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in tumor pathogenesis. However, the roles of long non coding RNAs (lncRNAs) in the lncRNA-related ceRNA network of intrahepatic cholangiocarcinoma (ICC) still remain enigmatic. The current study aims to identify prognostic factors in the lncRNA-related ceRNA network of ICC. Methods The transcriptome sequencing data of lncRNAs, messenger RNA (mRNA) and microRNA (miR) were downloaded from the SRA and TCGA databases. Differentially expressed lncRNAs (DElncRNAs), DEmiRs and DEmRNAs were identified and adopted to construct an lncRNA-miR-mRNA ceRNA network. ICC-associated DEmRNAs were adopted to construct the protein–protein interaction (PPI) network. The expression of the top 6 genes in the hub module was validated with mRNA transcriptome sequencing data and ICC-related gene expression dataset GSE45001, followed by GO and KEGG pathway enrichment analysis. The relationship between the hub gene-associated ceRNA network and the overall survival of patients with ICC was predicted by conducting a Kaplan–Meier survival analysis. Results Sixty co-expressed DEmRNAs were identified in the ceRNA network. The top 6 hub genes consisted of downregulated FOS, IGF2, FOXO1 and NTF3, upregulated IGF1R, and insignificantly downregulated HGF in ICC tissues, when compared to that of normal adjacent tissues, followed by the successful construction of lncRNA-miR-hub network consisting of 86 ceRNA modules. MME-AS1 and hsa-miR-182 were associated with overall survival in ICC patients. FOS, IGF1R, IGF2, FOXO1, and NTF3 might target “TGF-β signaling pathway”, “the hedgehog signaling pathway”, “retinol metabolism”, or “type II diabetes mellitus” pathways respectively. Conclusion These results indicate that FOS, IGF1R, IGF2, FOXO1, and NTF3 were useful prognostic factors in determining the prognosis of patients with ICC.
Collapse
Affiliation(s)
- Zhichen Kang
- Department of Rehabilitation, the Second Hospital of Jilin University, Changchun, 130022 People's Republic of China
| | - Lixin Guo
- Department of Rehabilitation, the Second Hospital of Jilin University, Changchun, 130022 People's Republic of China
| | - Zhuo Zhu
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, 130022 People's Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130022 Jilin People's Republic of China
| |
Collapse
|
7
|
Yang J, Zhan XZ, Malola J, Li ZY, Pawar JS, Zhang HT, Zha ZG. The multiple roles of Thy-1 in cell differentiation and regeneration. Differentiation 2020; 113:38-48. [PMID: 32403041 DOI: 10.1016/j.diff.2020.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/17/2022]
Abstract
Thy-1 is a 25-37 kDa glycophosphatidylinositol (GPI)-anchored cell surface protein that was discovered more than 50 years ago. Recent findings have suggested that Thy-1 is expressed on thymocytes, mesenchymal stem cells (MSCs), cancer stem cells, hematopoietic stem cells, fibroblasts, myofibroblasts, endothelial cells, neuronal smooth muscle cells, and pan T cells. Thy-1 plays vital roles in cell migration, adhesion, differentiation, transdifferentiation, apoptosis, mechanotransduction, and cell division, which in turn are involved in tumor development, pulmonary fibrosis, neurite outgrowth, and T cell activation. Studies have increasingly indicated a significant role of Thy-1 in cell differentiation and regeneration. However, despite recent research, many questions remain regarding the roles of Thy-1 in cell differentiation and regeneration. This review aimed to summarize the roles of Thy-1 in cell differentiation and regeneration. Furthermore, since Thy-1 is an outer leaflet membrane protein anchored by GPI, we attempted to address how Thy-1 regulates intracellular pathways through cis and trans signals. Due to the complexity and mystery surrounding the issue, we also summarized the Thy-1-related pathways in different biological processes, and this might provide novel insights in the field of cell differentiation and regeneration.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Zhen Zhan
- Department of Stomatology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jonathan Malola
- College of Pharmacy, Purdue University, West Lafayette, 47906, IN, USA
| | - Zhen-Yan Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, 47906, IN, USA
| | - Huan-Tian Zhang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To give a state-of-art knowledge regarding cancer-associated fibroblasts (CAF) in cholangiocarcinoma (CCA) based both on direct evidence and studies on other desmoplastic cancers. High contingency of CAF characterizes CCA, a tumor with a biliary epithelial phenotype that can emerge anywhere in the biliary tree. Current treatments are very limited, the surgical resection being the only effective treatment but restricted to a minority of patients, whereas the remaining patients undergo palliative chemotherapy regimens. In cancer, CAF shape the tumor microenvironment, drive cancer growth and progression, and contribute to drug resistance. All these functions are accomplished through an interplay network between CAF and surrounding cells including tumor and other stromal cells, i.e. immune and endothelial cells. RECENT FINDINGS Several studies have pointed out the existence of CAF sub-populations carrying out several and opposite functions, cancer-promoting or cancer-restraining as shown in pancreatic cancer, another prototypic desmoplastic tumor in which heterogeneity of CAF is well demonstrated. SUMMARY New CAF functions are now emerging in pancreatic and breast cancers like the modulation of immune responses or tumor metabolism, opening new area for treatments.
Collapse
|
9
|
Tsunedomi R, Yoshimura K, Suzuki N, Hazama S, Nagano H. Clinical implications of cancer stem cells in digestive cancers: acquisition of stemness and prognostic impact. Surg Today 2020; 50:1560-1577. [PMID: 32025858 DOI: 10.1007/s00595-020-01968-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Digestive system cancers are the most frequent cancers worldwide and often associated with poor prognosis because of their invasive and metastatic characteristics. Recent studies have found that the plasticity of cancer cells can impart cancer stem-like properties via the epithelial-mesenchymal transition (EMT). Cancer stem-like properties such as tumor initiation are integral to the formation of metastasis, which is the main cause of poor prognosis. Numerous markers of cancer stem cells (CSCs) have been identified in many types of cancer. Therefore, CSCs, via their stem cell-like functions, may play an important role in prognosis after surgery. While several reports have described prognostic analysis using CSC markers, few reviews have summarized CSCs and their association with prognosis. Herein, we review the prognostic potential of eight CSC markers, CD133, CD44, CD90, ALDH1A1, EPCAM, SOX2, SOX9, and LGR5, in digestive cancers including those of the pancreas, colon, liver, gastric, and esophagus.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Kiyoshi Yoshimura
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Faculty of Medicine, Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
10
|
Xu Z, Wang T, Song H, Jiang X. Flotillin-2 predicts poor prognosis and promotes tumor invasion in intrahepatic cholangiocarcinoma. Oncol Lett 2020; 19:2243-2250. [PMID: 32194722 PMCID: PMC7039164 DOI: 10.3892/ol.2020.11349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant neoplasm arising from the intrahepatic bile ducts. As a scaffold protein of lipid rafts, flotillin-2 is upregulated in several types of cancer and promotes tumor progression and metastasis. To the best of our knowledge, the present study was the first to detect the upregulation of flotillin-2 in iCCA tissues compared with matched adjacent non-tumor tissues. In addition, immunohistochemistry was used to investigate the expression of flotillin-2 in a microarray consisting of 92 iCCA tissues. A total of 59 samples (64.1%) exhibited high flotillin-2 expression, which was significantly related to lymph node metastasis (P=0.029) and tumor-node-metastasis stage (P=0.016). Further in vitro study demonstrated that knockdown of flotillin-2 inhibited the invasive capability of iCCA cell lines, further supporting the participation of flotillin-2 in cancer invasion and metastasis. Moreover, Kaplan-Meier analysis showed patients with high flotillin-2 expression had worse overall survival outcomes. The multivariate Cox proportional hazards model further revealed that high flotillin-2 expression was an independent indicator (P=0.005) of poor prognosis for patients with iCCA. Collectively, the present study revealed that as a promoter of invasion and an independent marker of poor prognosis, flotillin-2 may serve as a potential target for the development of novel therapeutic agents for iCCA.
Collapse
Affiliation(s)
- Zhiying Xu
- Department of Nuclear Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264001, P.R. China
| | - Tao Wang
- Department of Interventional Therapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264001, P.R. China
| | - Haiyang Song
- Department of Interventional Therapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264001, P.R. China
| | - Xuewen Jiang
- Department of Nuclear Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
11
|
Fibroblasts in urothelial bladder cancer define stroma phenotypes that are associated with clinical outcome. Sci Rep 2020; 10:281. [PMID: 31937798 PMCID: PMC6959241 DOI: 10.1038/s41598-019-55013-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Little attention was given to the interaction between tumor and stromal cells in urothelial bladder carcinoma (UBC). While recent studies point towards the existence of different fibroblast subsets, no comprehensive analyses linking different fibroblast markers to UBC patient survival have been performed so far. Through immunohistochemical analysis of five selected fibroblast markers, namely alpha smooth muscle actin (ASMA), CD90/Thy-1, fibroblast activation protein (FAP), platelet derived growth factor receptor-alpha and -beta (PDGFRa,-b), this study investigates their association with survival and histopathological characteristics in a cohort of 344 UBC patients, involving both, muscle-invasive and non-muscle-invasive cases. The data indicates that combinations of stromal markers are more suited to identify prognostic patient subgroups than single marker analysis. Refined stroma-marker-based patient stratification was achieved through cluster analysis and identified a FAP-dominant patient cluster as independent marker for shorter 5-year-survival (HR(95% CI)2.25(1.08–4.67), p = 0.030). Analyses of interactions between fibroblast and CD8a-status identified a potential minority of cases with CD90-defined stroma and high CD8a infiltration showing a good prognosis of more than 80% 5-year-survival. Presented analyses point towards the existence of different stroma-cell subgroups with distinct tumor-modulatory properties and motivate further studies aiming to better understand the molecular tumor–stroma crosstalk in UBC.
Collapse
|
12
|
Hang H, Jeong S, Sha M, Kong D, Xi Z, Tong Y, Xia Q. Cholangiocarcinoma: anatomical location-dependent clinical, prognostic, and genetic disparities. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:744. [PMID: 32042760 DOI: 10.21037/atm.2019.12.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Anatomical location is considered in diagnostic and therapeutic approaches of cholangiocarcinoma (CCA). However, disparities and its extents in proportion of surgical candidates, prognostic factors, prognostic genetic networks, susceptibility for lymph node dissection, and disease stage at diagnosis remain to be confirmed. Methods A total of 11,710 patients with cholangiocarcinoma from Surveillance, Epidemiology, and End Results Cancer Registries (SEER) and 45 CCA patients with paired tumor and normal specimens from The Cancer Genome Atlas were studied. Kaplan-Meier estimation, Cox proportional hazards regression, Pearson's correlation, comparison between anatomical location (distal, intrahepatic, and perihilar)-dependent CCAs, differential expressive gene stratification, potential interactive gene identification, and confirmation on pathways of the prognostic networks were carried out. Results Survival outcomes were most favorable in the distal type, followed by perihilar and intrahepatic types, but postsurgical prognosis was slightly higher in intrahepatic type compared to perihilar type. Distant historic stage at diagnosis was noticed in intrahepatic type. Significant prognostic factors and their hazards ratios were dependent to the anatomical location. In addition, lymph node dissection provided significant survival benefits in perihilar type only. Furthermore, prognosis-predictive genes, as well as potential processes and pathways, were significantly among the anatomical location-dependent types that the genes barely overlapped. Conclusions There are disparities in almost all aspects among distal, intrahepatic, and perihilar CCAs. Anatomical location needs to be considered in treatment, prognostic estimation, identifying targets, and developing therapeutic approaches for CCA.
Collapse
Affiliation(s)
- Hualian Hang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Seogsong Jeong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Meng Sha
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Defu Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Tong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
13
|
Miyata T, Yamashita YI, Yoshizumi T, Shiraishi M, Ohta M, Eguchi S, Aishima S, Fujioka H, Baba H. CXCL12 expression in intrahepatic cholangiocarcinoma is associated with metastasis and poor prognosis. Cancer Sci 2019; 110:3197-3203. [PMID: 31361379 PMCID: PMC6778649 DOI: 10.1111/cas.14151] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/30/2022] Open
Abstract
Intrahepatic cholangiocarcinoma is a rare malignant biliary neoplasm that causes a poor prognosis even after curative hepatectomy. Liver metastasis is the major recurrence pattern of intrahepatic cholangiocarcinoma; therefore, the prevention of liver metastasis is a desirable objective. The aim of this study is to identify gene(s) related to liver metastasis of intrahepatic cholangiocarcinoma and to examine the inhibitory effects on metastasis of intrahepatic cholangiocarcinoma by controlling such gene(s). We collected 3 pairs of intrahepatic cholangiocarcinoma frozen samples, and 36 pairs (primary and metastatic lesions) of intrahepatic cholangiocarcinoma formalin-fixed paraffin-embedded samples, from patients who underwent surgical resection at hospitals related to the Kyushu Study Group of Liver Surgery between 2002 and 2016. We carried out cDNA microarray analyses and immunohistochemistry to identify candidate genes, and evaluated one of them as a therapeutic target using human cholangiocarcinoma cell lines. We identified 4 genes related to liver metastasis using cDNA microarray, and found that CXCL12 was the only gene whose expression was significantly higher in liver metastasis than in primary intrahepatic cholangiocarcinoma by immunohistochemistry (P = .003). In prognosis, patients in the high CXCL12 group showed a significantly poor prognosis in disease-free (P < .0001) and overall survival (P = .0004). By knockdown of CXCL12, we could significantly suppress the invasive and migratory capabilities of 2 human cholangiocarcinoma cell lines. Therefore, CXCL12 might be associated with metastasis and poor prognosis in intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Tatsunori Miyata
- Department of Gastroenterological Surgery, Kumamoto University, Kumamoto, Japan.,Kyushu Study Group of Liver Surgery, Nagasaki, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Kumamoto University, Kumamoto, Japan.,Kyushu Study Group of Liver Surgery, Nagasaki, Japan
| | | | | | - Masayuki Ohta
- Kyushu Study Group of Liver Surgery, Nagasaki, Japan
| | - Susumu Eguchi
- Kyushu Study Group of Liver Surgery, Nagasaki, Japan
| | - Shinichi Aishima
- Department of Diagnostic Pathology, Saga University, Saga, Japan
| | | | - Hideo Baba
- Department of Gastroenterological Surgery, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
14
|
Minami T, Ishii T, Yasuchika K, Fukumitsu K, Ogiso S, Miyauchi Y, Kojima H, Kawai T, Yamaoka R, Oshima Y, Kawamoto H, Kotaka M, Yasuda K, Osafune K, Uemoto S. Novel hybrid three-dimensional artificial liver using human induced pluripotent stem cells and a rat decellularized liver scaffold. Regen Ther 2019; 10:127-133. [PMID: 31032388 PMCID: PMC6477477 DOI: 10.1016/j.reth.2019.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction Liver transplantation is currently the only curative therapy for end-stage liver failure; however, establishment of alternative treatments is required owing to the serious donor organ shortage. Here, we propose a novel model of hybrid three-dimensional artificial livers using both human induced pluripotent stem cells (hiPSCs) and a rat decellularized liver serving as a scaffold. Methods Rat liver harvesting and decellularization were performed as reported in our previous studies. The decellularized liver scaffold was recellularized with hiPSC-derived hepatocyte-like cells (hiPSC-HLCs) through the biliary duct. The recellularized liver graft was continuously perfused with the culture medium using a pump at a flow rate of 0.5 mL/min in a standard CO2 (5%) cell incubator at 37 °C. Results After 48 h of continuous perfusion culture, the hiPSC-HLCs of the recellularized liver distributed into the parenchymal space. Furthermore, the recellularized liver expressed the albumin (ALB) and CYP3A4 genes, and secreted human ALB into the culture medium. Conclusion Novel hybrid artificial livers using hiPSCs and rat decellularized liver scaffolds were successfully generated, which possessed human hepatic functions. Human iPSC-derived hepatocytes were engrafted in a rat decellularized liver scaffold. The recellularized liver expressed human liver-related markers ALB and CYP3A4. The recellularized liver scaffold secreted human albumin. This novel model shows potential for artificial whole liver transplantation.
Collapse
Affiliation(s)
- Takahito Minami
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takamichi Ishii
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kentaro Yasuchika
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Japanese Red Cross Wakayama Medical Center, 4-20 Komatsubara-dori, Wakayama City 640-8558, Japan
| | - Ken Fukumitsu
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoshi Ogiso
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuya Miyauchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hidenobu Kojima
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Kawai
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryoya Yamaoka
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yu Oshima
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroshi Kawamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Maki Kotaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Katsutaro Yasuda
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|