1
|
Van Den Berghe T, Delbare F, Candries E, Lejoly M, Algoet C, Chen M, Laloo F, Huysse WCJ, Creytens D, Verstraete KL. A retrospective external validation study of the Birmingham Atypical Cartilage Tumour Imaging Protocol (BACTIP) for the management of solitary central cartilage tumours of the proximal humerus and around the knee. Eur Radiol 2024; 34:4988-5006. [PMID: 38319428 DOI: 10.1007/s00330-024-10604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024]
Abstract
OBJECTIVES This study aimed to externally validate the Birmingham Atypical Cartilage Tumour Imaging Protocol (BACTIP) recommendations for differentiation/follow-up of central cartilage tumours (CCTs) of the proximal humerus, distal femur, and proximal tibia and to propose BACTIP adaptations if the results provide new insights. METHODS MRIs of 123 patients (45 ± 11 years, 37 men) with an untreated CCT with MRI follow-up (n = 62) or histopathological confirmation (n = 61) were retrospectively/consecutively included and categorised following the BACTIP (2003-2020 / Ghent University Hospital/Belgium). Tumour length and endosteal scalloping differences between enchondroma, atypical cartilaginous tumour (ACT), and high-grade chondrosarcoma (CS II/III/dedifferentiated) were evaluated. ROC-curve analysis for differentiating benign from malignant CCTs and for evaluating the BACTIP was performed. RESULTS For lesion length and endosteal scalloping, ROC-AUCs were poor and fair-excellent, respectively, for differentiating different CCT groups (0.59-0.69 versus 0.73-0.91). The diagnostic performance of endosteal scalloping and the BACTIP was higher than that of lesion length. A 1° endosteal scalloping cut-off differentiated enchondroma from ACT + high-grade chondrosarcoma with a sensitivity of 90%, reducing the potential diagnostic delay. However, the specificity was 29%, inducing overmedicalisation (excessive follow-up). ROC-AUC of the BACTIP was poor for differentiating enchondroma from ACT (ROC-AUC = 0.69; 95%CI = 0.51-0.87; p = 0.041) and fair-good for differentiation between other CCT groups (ROC-AUC = 0.72-0.81). BACTIP recommendations were incorrect/unsafe in five ACTs and one CSII, potentially inducing diagnostic delay. Eleven enchondromas received unnecessary referrals/follow-up. CONCLUSION Although promising as a useful tool for management/follow-up of CCTs of the proximal humerus, distal femur, and proximal tibia, five ACTs and one chondrosarcoma grade II were discharged, potentially inducing diagnostic delay, which could be reduced by adapting BACTIP cut-off values. CLINICAL RELEVANCE STATEMENT Mostly, Birmingham Atypical Cartilage Tumour Imaging Protocol (BACTIP) assesses central cartilage tumours of the proximal humerus and the knee correctly. Both when using the BACTIP and when adapting cut-offs, caution should be taken for the trade-off between underdiagnosis/potential diagnostic delay in chondrosarcomas and overmedicalisation in enchondromas. KEY POINTS • This retrospective external validation confirms the Birmingham Atypical Cartilage Tumour Imaging Protocol as a useful tool for initial assessment and follow-up recommendation of central cartilage tumours in the proximal humerus and around the knee in the majority of cases. • Using only the Birmingham Atypical Cartilage Tumour Imaging Protocol, both atypical cartilaginous tumours and high-grade chondrosarcomas (grade II, grade III, and dedifferentiated chondrosarcomas) can be misdiagnosed, excluding them from specialist referral and further follow-up, thus creating a potential risk of delayed diagnosis and worse prognosis. • Adapted cut-offs to maximise detection of atypical cartilaginous tumours and high-grade chondrosarcomas, minimise underdiagnosis and reduce potential diagnostic delay in malignant tumours but increase unnecessary referral and follow-up of benign tumours.
Collapse
Affiliation(s)
- Thomas Van Den Berghe
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium.
| | - Felix Delbare
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - Esther Candries
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - Maryse Lejoly
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - Chloé Algoet
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - Min Chen
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Frederiek Laloo
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - Wouter C J Huysse
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| | - David Creytens
- Department of Pathology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Koenraad L Verstraete
- Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Sint-Pietersnieuwstraat 25, 9000, Ghent, Belgium
| |
Collapse
|