1
|
Nusrat F, Khanna A, Jain A, Jiang W, Lavu H, Yeo CJ, Bowne W, Nevler A. The Clinical Implications of KRAS Mutations and Variant Allele Frequencies in Pancreatic Ductal Adenocarcinoma. J Clin Med 2024; 13:2103. [PMID: 38610868 PMCID: PMC11012482 DOI: 10.3390/jcm13072103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The KRAS proto-oncogene is a major driver of pancreatic tumorigenesis and is nearly ubiquitously mutated in pancreatic ductal adenocarcinoma (PDAC). KRAS point mutations are detected in over 90% of PDAC cases, and these mutations have been shown to be associated with worse therapy response and overall survival. Pathogenic KRAS mutations are mostly limited to codons 12, 13 and 61, with G12D, G12V, G12R, Q61H, and G13D accounting for approximately 95% of the mutant cases. Emerging data have shown the importance of specific mutant subtypes, as well as KRAS variant allele frequency on clinical prognosis. Furthermore, novel technologies and therapies are being developed to target specific mutant subtypes, with encouraging early results. In this paper, we aim to review the recent studies regarding the relative impact of specific mutant KRAS subtypes on oncologic outcomes, the application of variant allele frequency in next generation sequencing analyses, and the ongoing research into therapies targeting specific mutant KRAS subtypes.
Collapse
Affiliation(s)
- Faria Nusrat
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Akshay Khanna
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Aditi Jain
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wei Jiang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Harish Lavu
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Charles J Yeo
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wilbur Bowne
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Avinoam Nevler
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Choi MH, Yoon SB, Lee YJ, Jung ES, Pak S, Han D, Nickel D. Rim enhancement of pancreatic ductal adenocarcinoma: investigating the relationship with DCE-MRI-based radiomics and next-generation sequencing. Front Oncol 2024; 14:1304187. [PMID: 38525415 PMCID: PMC10959187 DOI: 10.3389/fonc.2024.1304187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/16/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose To identify the clinical and genetic variables associated with rim enhancement of pancreatic ductal adenocarcinoma (PDAC) and to develop a dynamic contrast-enhanced (DCE) MRI-based radiomics model for predicting the genetic status from next-generation sequencing (NGS). Materials and methods Patients with PDAC, who underwent pretreatment pancreatic DCE-MRI between November 2019 and July 2021, were eligible in this prospective study. Two radiologists evaluated presence of rim enhancement in PDAC, a known radiological prognostic indicator, on DCE MRI. NGS was conducted for the tissue from the lesion. The Mann-Whitney U and Chi-square tests were employed to identify clinical and genetic variables associated with rim enhancement in PDAC. For continuous variables predicting rim enhancement, the cutoff value was set based on the Youden's index from the receiver operating characteristic (ROC) curve. Radiomics features were extracted from a volume-of-interest of PDAC on four DCE maps (Ktrans, Kep, Ve, and iAUC). A random forest (RF) model was constructed using 10 selected radiomics features from a pool of 392 original features. This model aimed to predict the status of significant NGS variables associated with rim enhancement. The performance of the model was validated using test set. Results A total of 55 patients (32 men; median age 71 years) were randomly assigned to the training (n = 41) and test (n = 14) sets. In the training set, KRAS, TP53, CDKN2A, and SMAD4 mutation rates were 92.3%, 61.8%, 14.5%, and 9.1%, respectively. Tumor size and KRAS variant allele frequency (VAF) differed between rim-enhancing (n = 12) and nonrim-enhancing (n = 29) PDACs with a cutoff of 17.22%. The RF model's average AUC from 10-fold cross-validation for predicting KRAS VAF status was 0.698. In the test set comprising 6 tumors with low KRAS VAF and 8 with high KRAS VAF, the RF model's AUC reached 1.000, achieving a sensitivity of 75.0%, specificity of 100% and accuracy of 87.5%. Conclusion Rim enhancement of PDAC is associated with KRAS VAF derived from NGS-based genetic information. For predicting the KRAS VAF status in PDAC, a radiomics model based on DCE maps showed promising results.
Collapse
Affiliation(s)
- Moon Hyung Choi
- Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Bae Yoon
- Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Joon Lee
- Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Hospital Pathology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seongyong Pak
- Research Collaboration, Siemens Healthineers Ltd., Seoul, Republic of Korea
| | - Dongyeob Han
- Research Collaboration, Siemens Healthineers Ltd., Seoul, Republic of Korea
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| |
Collapse
|
3
|
He Q, Liu Z, Wang J. Targeting KRAS in PDAC: A New Way to Cure It? Cancers (Basel) 2022; 14:cancers14204982. [PMID: 36291766 PMCID: PMC9599866 DOI: 10.3390/cancers14204982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer is one of the most intractable malignant tumors worldwide, and is known for its refractory nature and poor prognosis. The fatality rate of pancreatic cancer can reach over 90%. In pancreatic ductal carcinoma (PDAC), the most common subtype of pancreatic cancer, KRAS is the most predominant mutated gene (more than 80%). In recent decades, KRAS proteins have maintained the reputation of being “undruggable” due to their special molecular structures and biological characteristics, making therapy targeting downstream genes challenging. Fortunately, the heavy rampart formed by KRAS has been broken down in recent years by the advent of KRASG12C inhibitors; the covalent inhibitors bond to the switch-II pocket of the KRASG12C protein. The KRASG12C inhibitor sotorasib has been received by the FDA for the treatment of patients suffering from KRASG12C-driven cancers. Meanwhile, researchers have paid close attention to the development of inhibitors for other KRAS mutations. Due to the high incidence of PDAC, developing KRASG12D/V inhibitors has become the focus of attention. Here, we review the clinical status of PDAC and recent research progress in targeting KRASG12D/V and discuss the potential applications.
Collapse
Affiliation(s)
- Qianyu He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (Z.L.); (J.W.)
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Correspondence: (Z.L.); (J.W.)
| |
Collapse
|