1
|
Hong JY, Kim H, Jeon WJ, Yeo C, Kim H, Lee J, Lee YJ, Ha IH. Animal Models of Intervertebral Disc Diseases: Advantages, Limitations, and Future Directions. Neurol Int 2024; 16:1788-1818. [PMID: 39728755 DOI: 10.3390/neurolint16060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Animal models are valuable tools for studying the underlying mechanisms of and potential treatments for intervertebral disc diseases. In this review, we discuss the advantages and limitations of animal models of disc diseases, focusing on lumbar spinal stenosis, disc herniation, and degeneration, as well as future research directions. The advantages of animal models are that they enable controlled experiments, long-term monitoring to study the natural history of the disease, and the testing of potential treatments. However, they also have limitations, including species differences, ethical concerns, a lack of standardized protocols, and short lifespans. Therefore, ongoing research focuses on improving animal model standardization and incorporating advanced imaging and noninvasive techniques, genetic models, and biomechanical analyses to overcome these limitations. These future directions hold potential for improving our understanding of the underlying mechanisms of disc diseases and for developing new treatments. Overall, although animal models can provide valuable insights into pathophysiology and potential treatments for disc diseases, their limitations should be carefully considered when interpreting findings from animal studies.
Collapse
Affiliation(s)
- Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| |
Collapse
|
2
|
Crowley JD, Oliver RA, Wang T, Pelletier MH, Walsh WR. Lateral fenestration of lumbar intervertebral discs in rabbits: development and characterisation of an in vivo preclinical model with multi-modal endpoint analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2097-2115. [PMID: 38372793 DOI: 10.1007/s00586-024-08153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/19/2023] [Accepted: 01/21/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE To evaluate the biological and biomechanical effects of fenestration/microdiscectomy in an in vivo rabbit model, and in doing so, create a preclinical animal model of IVDD. METHODS Lateral lumbar IVD fenestration was performed in vivo as single- (L3/4; n = 12) and multi-level (L2/3, L3/4, L4/5; n = 12) fenestration in skeletally mature 6-month-old New Zealand White rabbits. Radiographic, micro-CT, micro-MRI, non-destructive robotic range of motion, and histological evaluations were performed 6- and 12-weeks postoperatively. Independent t tests, one-way and two-way ANOVA and Kruskal-Wallis tests were used for parametric and nonparametric data, respectively. Statistical significance was set at P < 0.05. RESULTS All rabbits recovered uneventfully from surgery and ambulated normally. Radiographs and micro-CT demonstrated marked reactive proliferative osseous changes and endplate sclerosis at fenestrated IVDs. Range of motion at the fenestrated disc space was significantly reduced compared to intact controls at 6- and 12-weeks postoperatively (P < 0.05). Mean disc height index percentage for fenestrated IVDs was significantly lower than adjacent, non-operated IVDs for both single and multi-level groups, at 6 and 12 weeks (P < 0.001). Pfirrmann MRI IVDD and histological grading scores were significantly higher for fenestrated IVDs compared to non-operated adjacent and age-matched control IVDs for single and multi-level groups at 6 and 12 weeks (P < 0.001). CONCLUSIONS Fenestration, akin to microdiscectomy, demonstrated significant biological, and biomechanical effects in this in vivo rabbit model and warrants consideration by veterinary and human spine surgeons. This described model may be suitable for preclinical in vivo evaluation of therapeutic strategies for IVDD in veterinary and human patients.
Collapse
Affiliation(s)
- James D Crowley
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Prince of Wales Hospital, Sydney, NSW, Australia.
| | - Rema A Oliver
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Tian Wang
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Matthew H Pelletier
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Prince of Wales Hospital, Sydney, NSW, Australia
| | - William R Walsh
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
3
|
Li B, Wang T, Huang Y, Fan Y, Yu H, Li A, Qi D, Wang Q, Xue C, Wang Z, Zheng G, Wang Y. Correlation between Disc Imaging Observations and Clinical Efficacy after Percutaneous Endoscopic Lumbar Discectomy: A 1-Year Follow-up Study. Orthop Surg 2024; 16:851-863. [PMID: 38384172 PMCID: PMC10984810 DOI: 10.1111/os.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
OBJECTIVE The connection between alterations in the disc structure following percutaneous endoscopic lumbar discectomy (PELD) and symptoms in patients postsurgery has not been reported yet. The purpose of the present study was to discuss the potential correlation between the changes in the morphological characteristics of various reference surfaces of the intervertebral disc after percutaneous endoscopic lumbar discectomy (PELD) and clinical outcomes, to identify the morphological parameters that affect efficacy and provide an evidence-based foundation for assessing postoperative efficacy. METHODS From October 2019 to October 2021, after percutaneous endoscopic lumbar discectomy (PELD), 98 individuals were enrolled. MRI DICOM data of the lumbar spine were obtained before and after surgery, specifically around 3 months. The morphological parameters of the operated and adjacent segments of the discs were measured using T2-weighted images from three reference planes. Outcomes were assessed using the Oswestry disability index (ODI), visual analogue pain scores for the back and leg (VAS-back/VAS-leg), Japanese Orthopaedic Association (JOA) scores, and recovery rates. Postoperative changes in disc parameters and outcomes were compared between patients with different severity and types of LDH based on the MSU staging. Patients completed the questionnaire during outpatient follow-up appointments 3, 6, and 12 months after the surgery. The follow-up period was 14.69 ± 4.21 months, ranging from 12 to 24 months. RESULTS Parameters such as area and circumference of intervertebral discs in the cross-section were not associated with the change in the efficacy index. Postoperatively, a negative correlation between the variation of the disc height, disc height index, and protrusion distance and the difference in VAS scores for low back pain at 3 and 6 months was observed among the two sagittal change parameters. Differences between changes in disc imaging parameters and postoperative efficacy were not statistically significant between various types of lumbar disc herniation. CONCLUSION For the patients after percutaneous endoscopic lumbar discectomy, the changes in parameters such as disc area and circumference in the cross-sectional plane are not associated with efficacy, and the changes in disc height and herniation distance in the sagittal plane provide a morphologic basis for the assessment of short-term postoperative efficacy. In addition, the changes in disc morphologic parameters and postoperative efficacy do not differ between various types of lumbar disc herniation.
Collapse
Affiliation(s)
- Bing Li
- Department of OrthopedicsMedical School of the Chinese People's Liberation Army (PLA)BeijingChina
- The First Medical Centre of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Tian‐hao Wang
- The First Medical Centre of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
- Department of OrthopedicsThe Fourth Medical Center of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Yi Huang
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Yi‐ming Fan
- Department of OrthopedicsMedical School of the Chinese People's Liberation Army (PLA)BeijingChina
- The First Medical Centre of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Han Yu
- Department of OrthopedicsMedical School of the Chinese People's Liberation Army (PLA)BeijingChina
- The First Medical Centre of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Ao‐qiong Li
- The First Medical Centre of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
- Department of OrthopedicsThe Fourth Medical Center of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Deng‐bin Qi
- The First Medical Centre of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
- Department of OrthopedicsThe Fourth Medical Center of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Qi Wang
- The First Medical Centre of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
- Department of OrthopedicsThe Fourth Medical Center of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Chao Xue
- The First Medical Centre of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
- Department of OrthopedicsThe Fourth Medical Center of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Ze Wang
- The First Medical Centre of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Guo‐quan Zheng
- The First Medical Centre of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
- Department of OrthopedicsThe Fourth Medical Center of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Yan Wang
- The First Medical Centre of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
- Department of OrthopedicsThe Fourth Medical Center of the Chinese People's Liberation Army (PLA) General HospitalBeijingChina
| |
Collapse
|
4
|
Hu X, Tian X, Yang C, Ling F, Liu H, Zhu X, Pei M, Yang H, Liu T, Xu Y, He F. Melatonin-loaded self-healing hydrogel targets mitochondrial energy metabolism and promotes annulus fibrosus regeneration. Mater Today Bio 2023; 23:100811. [PMID: 37810753 PMCID: PMC10550778 DOI: 10.1016/j.mtbio.2023.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Intervertebral disc (IVD) herniation is a major cause of chronic low back pain and disability. The current nucleus pulposus (NP) discectomy effectively relieves pain symptoms, but the annulus fibrosus (AF) defects are left unrepaired. Tissue engineering approaches show promise in treating AF injury and IVD degeneration; however, the presence of an inflammatory milieu at the injury site hinders the mitochondrial energy metabolism of AF cells, resulting in a lack of AF regeneration. In this study, we fabricated a dynamic self-healing hydrogel loaded with melatonin (an endocrine hormone well-known for its antioxidant and anti-inflammatory properties) and investigate whether melatonin-loaded hydrogel could promote AF defect repair by rescuing the matrix synthesis and energy metabolism of AF cells. The protective effects of melatonin on matrix components (e.g. type I and II collagen and aggrecan) in AF cells were observed in the presence of interleukin (IL)-1β. Additionally, melatonin was found to activate the nuclear factor erythroid 2-related factor signaling pathway, thereby safeguarding the mitochondrial function of AF cells from IL-1β, as evidenced by the increased level of adenosine triphosphate, mitochondrial membrane potential, and respiratory chain factor expression. The incorporation of melatonin into a self-healing hydrogel based on thiolated gelatin and β-cyclodextrin was proposed as a means of promoting AF regeneration. The successful implantation of melatonin-loaded hydrogel has been shown to facilitate in situ regeneration of AF tissue, thereby impeding IVD degeneration by preserving the hydration of nucleus pulposus in a rat box-cut IVD defect model. These findings offer compelling evidence that the development of a melatonin-loaded dynamic self-healing hydrogel can promote the mitochondrial functions of AF cells and represents a promising strategy for IVD regeneration.
Collapse
Affiliation(s)
- Xiayu Hu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Chunju Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
- Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Feng Ling
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
- Department of Orthopaedics,the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| |
Collapse
|
5
|
Panebianco CJ, Constant C, Vernengo AJ, Nehrbass D, Gehweiler D, DiStefano TJ, Martin J, Alpert DJ, Chaudhary SB, Hecht AC, Seifert AC, Nicoll SB, Grad S, Zeiter S, Iatridis JC. Combining adhesive and nonadhesive injectable hydrogels for intervertebral disc repair in an ovine discectomy model. JOR Spine 2023; 6:e1293. [PMID: 38156055 PMCID: PMC10751969 DOI: 10.1002/jsp2.1293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Intervertebral disc (IVD) disorders (e.g., herniation) directly contribute to back pain, which is a leading cause of global disability. Next-generation treatments for IVD herniation need advanced preclinical testing to evaluate their ability to repair large defects, prevent reherniation, and limit progressive degeneration. This study tested whether experimental, injectable, and nonbioactive biomaterials could slow IVD degeneration in an ovine discectomy model. Methods Ten skeletally mature sheep (4-5.5 years) experienced partial discectomy injury with cruciate-style annulus fibrosus (AF) defects and 0.1 g nucleus pulposus (NP) removal in the L1-L2, L2-L3, and L3-L4 lumbar IVDs. L4-L5 IVDs were Intact controls. IVD injury levels received: (1) no treatment (Injury), (2) poly (ethylene glycol) diacrylate (PEGDA), (3) genipin-crosslinked fibrin (FibGen), (4) carboxymethylcellulose-methylcellulose (C-MC), or (5) C-MC and FibGen (FibGen + C-MC). Animals healed for 12 weeks, then IVDs were assessed using computed tomography (CT), magnetic resonance (MR) imaging, and histopathology. Results All repaired IVDs retained ~90% of their preoperative disc height and showed minor degenerative changes by Pfirrmann grading. All repairs had similar disc height loss and Pfirrmann grade as Injury IVDs. Adhesive AF sealants (i.e., PEGDA and FibGen) did not herniate, although repair caused local endplate (EP) changes and inflammation. NP repair biomaterials (i.e., C-MC) and combination repair (i.e., FibGen + C-MC) exhibited lower levels of degeneration, less EP damage, and less severe inflammation; however, C-MC showed signs of herniation via biomaterial expulsion. Conclusions All repair IVDs were noninferior to Injury IVDs by IVD height loss and Pfirrmann grade. C-MC and FibGen + C-MC IVDs had the best outcomes, and may be appropriate for enhancement with bioactive factors (e.g., cells, growth factors, and miRNAs). Such bioactive factors appear to be necessary to prevent injury-induced IVD degeneration. Application of AF sealants alone (i.e., PEGDA and FibGen) resulted in EP damage and inflammation, particularly for PEGDA IVDs, suggesting further material refinements are needed.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Andrea J. Vernengo
- AO Research Institute DavosDavosSwitzerland
- Department of Chemical EngineeringRowan UniversityGlassboroNJUSA
| | | | | | - Tyler J. DiStefano
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jesse Martin
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | - David J. Alpert
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | - Saad B. Chaudhary
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Andrew C. Hecht
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alan C. Seifert
- Biomedical Engineering and Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Steven B. Nicoll
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | | | | | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
6
|
Williams RJ, Laagland LT, Bach FC, Ward L, Chan W, Tam V, Medzikovic A, Basatvat S, Paillat L, Vedrenne N, Snuggs JW, Poramba-Liyanage DW, Hoyland JA, Chan D, Camus A, Richardson SM, Tryfonidou MA, Le Maitre CL. Recommendations for intervertebral disc notochordal cell investigation: From isolation to characterization. JOR Spine 2023; 6:e1272. [PMID: 37780826 PMCID: PMC10540834 DOI: 10.1002/jsp2.1272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background Lineage-tracing experiments have established that the central region of the mature intervertebral disc, the nucleus pulposus (NP), develops from the embryonic structure called "the notochord". However, changes in the cells derived from the notochord which form the NP (i.e., notochordal cells [NCs]), in terms of their phenotype and functional identity from early developmental stages to skeletal maturation are less understood. These key issues require further investigation to better comprehend the role of NCs in homeostasis and degeneration as well as their potential for regeneration. Progress in utilizing NCs is currently hampered due to poor consistency and lack of consensus methodology for in vitro NC extraction, manipulation, and characterization. Methods Here, an international group has come together to provide key recommendations and methodologies for NC isolation within key species, numeration, in vitro manipulation and culture, and characterization. Results Recommeded protocols are provided for isolation and culture of NCs. Experimental testing provided recommended methodology for numeration of NCs. The issues of cryopreservation are demonstrated, and a pannel of immunohistochemical markers are provided to inform NC characterization. Conclusions Together we hope this article provides a road map for in vitro studies of NCs to support advances in research into NC physiology and their potential in regenerative therapies.
Collapse
Affiliation(s)
- Rebecca J Williams
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Lisanne T Laagland
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Frances C Bach
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Lizzy Ward
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Wilson Chan
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong China
| | - Vivian Tam
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong China
| | - Adel Medzikovic
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Shaghayegh Basatvat
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Lily Paillat
- Regenerative Medicine and Skeleton, RMeS Nantes Université, Oniris, CHU Nantes, INSERM, UMR 1229 Nantes France
| | - Nicolas Vedrenne
- Regenerative Medicine and Skeleton, RMeS Nantes Université, Oniris, CHU Nantes, INSERM, UMR 1229 Nantes France
| | - Joseph W Snuggs
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Deepani W Poramba-Liyanage
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
- NIHR Manchester Biomedical Research Centre Central Manchester Foundation Trust, Manchester Academic Health Science Centre Manchester UK
| | - Danny Chan
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong China
| | - Anne Camus
- Regenerative Medicine and Skeleton, RMeS Nantes Université, Oniris, CHU Nantes, INSERM, UMR 1229 Nantes France
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Marianna A Tryfonidou
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Christine L Le Maitre
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| |
Collapse
|
7
|
Diwan AD, Melrose J. Intervertebral disc degeneration and how it leads to low back pain. JOR Spine 2023; 6:e1231. [PMID: 36994466 PMCID: PMC10041390 DOI: 10.1002/jsp2.1231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this review was to evaluate data generated by animal models of intervertebral disc (IVD) degeneration published in the last decade and show how this has made invaluable contributions to the identification of molecular events occurring in and contributing to pain generation. IVD degeneration and associated spinal pain is a complex multifactorial process, its complexity poses difficulties in the selection of the most appropriate therapeutic target to focus on of many potential candidates in the formulation of strategies to alleviate pain perception and to effect disc repair and regeneration and the prevention of associated neuropathic and nociceptive pain. Nerve ingrowth and increased numbers of nociceptors and mechanoreceptors in the degenerate IVD are mechanically stimulated in the biomechanically incompetent abnormally loaded degenerate IVD leading to increased generation of low back pain. Maintenance of a healthy IVD is, thus, an important preventative measure that warrants further investigation to preclude the generation of low back pain. Recent studies with growth and differentiation factor 6 in IVD puncture and multi-level IVD degeneration models and a rat xenograft radiculopathy pain model have shown it has considerable potential in the prevention of further deterioration in degenerate IVDs, has regenerative properties that promote recovery of normal IVD architectural functional organization and inhibits the generation of inflammatory mediators that lead to disc degeneration and the generation of low back pain. Human clinical trials are warranted and eagerly anticipated with this compound to assess its efficacy in the treatment of IVD degeneration and the prevention of the generation of low back pain.
Collapse
Affiliation(s)
- Ashish D. Diwan
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSydneyNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
8
|
Schol J, Sakai D, Warita T, Nukaga T, Sako K, Wangler S, Tamagawa S, Zeiter S, Alini M, Grad S. Homing of vertebral-delivered mesenchymal stromal cells for degenerative intervertebral discs repair - an in vivo proof-of-concept study. JOR Spine 2023; 6:e1228. [PMID: 36994461 PMCID: PMC10041374 DOI: 10.1002/jsp2.1228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Cell transplantation shows promising results for intervertebral disc (IVD) repair, however, contemporary strategies present concerns regarding needle puncture damage, cell retention, and straining the limited nutrient availability. Mesenchymal stromal cell (MSC) homing is a natural mechanism of long-distance cellular migration to sites of damage and regeneration. Previous ex vivo studies have confirmed the potential of MSC to migrate over the endplate and enhance IVD-matrix production. In this study, we aimed to exploit this mechanism to engender IVD repair in a rat disc degeneration model. Methods Female Sprague Dawley rats were subjected to coccygeal disc degeneration through nucleus pulposus (NP) aspiration. In part 1; MSC or saline was transplanted into the vertebrae neighboring healthy or degenerative IVD subjected to irradiation or left untouched, and the ability to maintain the IVD integrity for 2 and 4 weeks was assessed by disc height index (DHI) and histology. For part 2, ubiquitously GFP expressing MSC were transplanted either intradiscally or vertebrally, and regenerative outcomes were compared at days 1, 5, and 14 post-transplantation. Moreover, the homing potential from vertebrae to IVD of the GFP+ MSC was assessed through cryosection mediated immunohistochemistry. Results Part 1 of the study revealed significantly improved maintenance of DHI for IVD vertebrally receiving MSC. Moreover, histological observations revealed a trend of IVD integrity maintenance. Part 2 of the study highlighted the enhanced DHI and matrix integrity for discs receiving MSC vertebrally compared with intradiscal injection. Moreover, GFP rates highlighted MSC migration and integration in the IVD at similar rates as the intradiscally treated cohort. Conclusion Vertebrally transplanted MSC had a beneficial effect on the degenerative cascade in their neighboring IVD, and thus potentially present an alternative administration strategy. Further investigation will be needed to determine the long-term effects, elucidate the role of cellular homing versus paracrine signaling, and validate our observations on a large animal model.
Collapse
Affiliation(s)
- Jordy Schol
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Research Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Daisuke Sakai
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Takayuki Warita
- Research Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
- TUNZ Pharma Co. Ltd.OsakaJapan
| | - Tadashi Nukaga
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Kosuke Sako
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Sebastian Wangler
- AO Research Institute DavosDavosSwitzerland
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Shota Tamagawa
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | | | | | - Sibylle Grad
- AO Research Institute DavosDavosSwitzerland
- ETH Zürich, Institute for BiomechanicsZürichSwitzerland
| |
Collapse
|