1
|
Dhiman MS, Bader TJ, Ponjevic D, Salo PT, Hart DA, Swamy G, Matyas JR, Duncan NA. Collagen integrity of the annulus fibrosus in degenerative disc disease individuals quantified with collagen hybridizing peptide. JOR Spine 2024; 7:e1359. [PMID: 39092166 PMCID: PMC11291301 DOI: 10.1002/jsp2.1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Degenerative disc disease (DDD) is accompanied by structural changes in the intervertebral discs (IVD). Extra-cellular matrix degradation of the annulus fibrosus (AF) has been linked with degeneration of the IVD. Collagen is a vital component of the IVD. Collagen hybridizing peptide (CHP) is an engineered protein that binds to degraded collagen, which we used to quantify collagen damage in AF. This method was used to compare AF samples obtained from donors with no DDD to AF samples from patients undergoing surgery for symptomatic DDD. Methods Fresh AF tissue was embedded in an optimal cutting temperature compound and cryosectioned at a thickness of 8 μm. Hematoxylin and Eosin staining was performed on sections for general histomorphological assessment. Serial sections were stained with Cy3-conjugated CHP and the mean fluorescence intensity and areal fraction of Cy3-positive staining were averaged for three regions of interest (ROI) on each CHP-stained section. Results Increases in mean fluorescence intensity (p = 0.0004) and percentage of positively stained area (p = 0.00008) with CHP were detected in DDD samples compared to the non-DDD samples. Significant correlations were observed between mean fluorescence intensity and percentage of positively stained area for both non-DDD (R = 0.98, p = 5E-8) and DDD (R = 0.79, p = 0.0012) samples. No significant differences were detected between sex and the lumbar disc level subgroups of the non-DDD and DDD groups. Only tissue pathology (non-DDD versus DDD) influenced the measured parameters. No three-way interactions between tissue pathology, sex, and lumbar disc level were observed. Discussion and Conclusions These findings suggest that AF collagen degradation is greater in DDD samples compared to non-DDD samples, as evidenced by the increased CHP staining. Strong positive correlations between the two measured parameters suggest that when collagen degradation occurs, it is detected by this technique and is widespread throughout the tissue. This study provides new insights into the structural alterations associated with collagen degradation in the AF that occur during DDD.
Collapse
Affiliation(s)
- Manmeet S. Dhiman
- Department of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
| | - Taylor J. Bader
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Dragana Ponjevic
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Paul T. Salo
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - David A. Hart
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Ganesh Swamy
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - John R. Matyas
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Neil A. Duncan
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Civil EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
2
|
Li J, Han N, Liu Z, Osman A, Xu L, Song J, Xiao Y, Hu W. Role of Galectin-3 in intervertebral disc degeneration: an experimental study. BMC Musculoskelet Disord 2024; 25:249. [PMID: 38561725 PMCID: PMC10983641 DOI: 10.1186/s12891-024-07382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND This study investigated the role of Galectin-3 in the degeneration of intervertebral disc cartilage. METHODS The patients who underwent lumbar spine surgery due to degenerative disc disease were recruited and divided into Modic I, Modic II, and Modic III; groups. HE staining was used to detect the pathological changes in endplates. The changes of Galectin-3, MMP3, Aggrecan, CCL3, and Col II were detected by immunohistochemistry, RT-PCR, and Western blot. MTT and flow cytometry were used to detect cartilage endplate cell proliferation, cell cycle, and apoptosis. RESULTS With the progression of degeneration (from Modic I to III), the chondrocytes and density of the cartilage endplate of the intervertebral disc decreased, and the collagen arrangement of the cartilage endplate of the intervertebral disc was broken and calcified. Meanwhile, the expressions of Aggrecan, Col II, Galectin-3, Aggrecan, and CCL3 gradually decreased. After treatment with Galectin-3 inhibitor GB1107, the proliferation of rat cartilage end plate cells was significantly reduced (P < 0.05). GB1107 (25 µmol/L) also significantly promoted the apoptosis of cartilage endplate cells (P < 0.05). Moreover, the percentage of cartilage endplate cells in the G1 phase was significantly higher, while that in the G2 and S phases was significantly lower (P < 0.05). Additionally, the mRNA and protein expression levels of MMP3, CCL3, and Aggrecan in rat cartilage end plate cells were lower than those in the control group. CONCLUSIONS Galectin-3 decreases with the progression of the cartilage endplate degeneration of the intervertebral disc. Galectin-3 may affect intervertebral disc degeneration by regulating the degradation of the extracellular matrix.
Collapse
Affiliation(s)
- Jianjiang Li
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Nianrong Han
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Zhenqiang Liu
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Akram Osman
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Leilei Xu
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Jing Song
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Yang Xiao
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Wei Hu
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China.
| |
Collapse
|
3
|
Li S, Du J, Huang Y, Gao S, Zhao Z, Chang Z, Zhang X, He B. From hyperglycemia to intervertebral disc damage: exploring diabetic-induced disc degeneration. Front Immunol 2024; 15:1355503. [PMID: 38444852 PMCID: PMC10912372 DOI: 10.3389/fimmu.2024.1355503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
The incidence of lumbar disc herniation has gradually increased in recent years, and most patients have symptoms of low back pain and nerve compression, which brings a heavy burden to patients and society alike. Although the causes of disc herniation are complex, intervertebral disc degeneration (IDD) is considered to be the most common factor. The intervertebral disc (IVD) is composed of the upper and lower cartilage endplates, nucleus pulposus, and annulus fibrosus. Aging, abnormal mechanical stress load, and metabolic disorders can exacerbate the progression of IDD. Among them, high glucose and high-fat diets (HFD) can lead to fat accumulation, abnormal glucose metabolism, and inflammation, which are considered important factors affecting the homeostasis of IDD. Diabetes and advanced glycation end products (AGEs) accumulation- can lead to various adverse effects on the IVD, including cell senescence, apoptosis, pyroptosis, proliferation, and Extracellular matrix (ECM) degradation. While current research provides a fundamental basis for the treatment of high glucose-induced IDD patients. further exploration into the mechanisms of abnormal glucose metabolism affecting IDD and in the development of targeted drugs will provide the foundation for the effective treatment of these patients. We aimed to systematically review studies regarding the effects of hyperglycemia on the progress of IDD.
Collapse
Affiliation(s)
- Shuai Li
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Medical College, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Jinpeng Du
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Yunfei Huang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Shenglong Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Medical College, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Zhigang Zhao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Zhen Chang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Xuefang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - BaoRong He
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| |
Collapse
|