1
|
Lai YT. Small Molecule HIV-1 Attachment Inhibitors: Discovery, Mode of Action and Structural Basis of Inhibition. Viruses 2021; 13:v13050843. [PMID: 34066522 PMCID: PMC8148533 DOI: 10.3390/v13050843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Viral entry into host cells is a critical step in the viral life cycle. HIV-1 entry is mediated by the sole surface envelope glycoprotein Env and is initiated by the interaction between Env and the host receptor CD4. This interaction, referred to as the attachment step, has long been considered an attractive target for inhibitor discovery and development. Fostemsavir, recently approved by the FDA, represents the first-in-class drug in the attachment inhibitor class. This review focuses on the discovery of temsavir (the active compound of fostemsavir) and analogs, mechanistic studies that elucidated the mode of action, and structural studies that revealed atomic details of the interaction between HIV-1 Env and attachment inhibitors. Challenges associated with emerging resistance mutations to the attachment inhibitors and the development of next-generation attachment inhibitors are also highlighted.
Collapse
Affiliation(s)
- Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Alexovič M, Dotsikas Y, Bober P, Sabo J. Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:402-421. [DOI: 10.1016/j.jchromb.2018.06.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/17/2018] [Indexed: 12/27/2022]
|
3
|
Meanwell NA, Krystal MR, Nowicka-Sans B, Langley DR, Conlon DA, Eastgate MD, Grasela DM, Timmins P, Wang T, Kadow JF. Inhibitors of HIV-1 Attachment: The Discovery and Development of Temsavir and its Prodrug Fostemsavir. J Med Chem 2017; 61:62-80. [PMID: 29271653 DOI: 10.1021/acs.jmedchem.7b01337] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection currently requires lifelong therapy with drugs that are used in combination to control viremia. The indole-3-glyoxamide 6 was discovered as an inhibitor of HIV-1 infectivity using a phenotypic screen and derivatives of this compound were found to interfere with the HIV-1 entry process by stabilizing a conformation of the virus gp120 protein not recognized by the host cell CD4 receptor. An extensive optimization program led to the identification of temsavir (31), which exhibited an improved antiviral and pharmacokinetic profile compared to 6 and was explored in phase 3 clinical trials as the phosphonooxymethyl derivative fostemsavir (35), a prodrug designed to address dissolution- and solubility-limited absorption issues. In this drug annotation, we summarize the structure-activity and structure-liability studies leading to the discovery of 31 and the clinical studies conducted with 35 that entailed the development of an extended release formulation suitable for phase 3 clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - David A Conlon
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D Eastgate
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Dennis M Grasela
- Innovative Medicines Development, Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Peter Timmins
- Drug Product Science and Technology, Bristol-Myers Squibb , Reeds Lane, Moreton, Merseyside CH46 1QW, United Kingdom
| | | | | |
Collapse
|
4
|
Vangavaragu JR, Valasani KR, Fang D, Williams TD, Yan SS. Determination of small molecule ABAD inhibitors crossing blood-brain barrier and pharmacokinetics. J Alzheimers Dis 2015; 42:333-44. [PMID: 24858403 DOI: 10.3233/jad-140252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A major obstacle to the development of effective treatment of Alzheimer's disease (AD) is successfully delivery of drugs to the brain. We have previously identified a series of benzothiazole phosphonate compounds that block the interaction of amyloid-β peptide with amyloid-β binding alcohol dehydrogenase (ABAD). A selective and sensitive method for the presence of three new benzothiazole ABAD inhibitors in mouse plasma, brain, and artificial cerebrospinal fluid has been developed and validated based on high performance liquid chromatography tandem mass spectrometry. Mass spectra were generated using Micromass Quattro Ultima "triple" quadrupole mass spectrometer equipped with an Electrospray Ionization interface. Good linearity was obtained over a concentration range of 0.05-2.5 μg/ml. The lowest limit of quantification and detection was found to be 0.05 μg/ml. All inter-day accuracies and precisions were within ± 15% of the nominal value and ± 20%, respectively, at the lower limit of quantitation. The tested compounds were stable at various conditions with recoveries >90.0% (RSD <10%). The method used for pharmacokinetic studies of compounds in mouse cerebrospinal fluid, plasma, and brain is accurate, precise, and specific with no matrix effect. Pharmacokinetic data showed that these compounds penetrate the blood-brain barrier (BBB) yielding 4-50 ng/ml peak brain concentrations and 2 μg/ml peak plasma concentrations from a 10 mg/kg dose. These results indicate that our newly synthesized small molecule ABAD inhibitors have a good drug properties with the ability to cross the blood-brain barrier, which holds a great potential for AD therapy.
Collapse
Affiliation(s)
- Jhansi Rani Vangavaragu
- Department of Pharmacology & Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Koteswara Rao Valasani
- Department of Pharmacology & Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Du Fang
- Department of Pharmacology & Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Todd D Williams
- Mass Spectrometry Laboratory University of Kansas, Lawrence, KS, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology & Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
5
|
Timmins P, Brown J, Meanwell NA, Hanna GJ, Zhu L, Kadow JF. Enabled clinical use of an HIV-1 attachment inhibitor through drug delivery. Drug Discov Today 2014; 19:1288-93. [DOI: 10.1016/j.drudis.2014.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 12/01/2022]
|
6
|
Koyuturk S, Can NO, Atkosar Z, Arli G. A novel dilute and shoot HPLC assay method for quantification of irbesartan and hydrochlorothiazide in combination tablets and urine using second generation C18-bonded monolithic silica column with double gradient elution. J Pharm Biomed Anal 2014; 97:103-10. [DOI: 10.1016/j.jpba.2014.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/10/2014] [Accepted: 04/26/2014] [Indexed: 12/12/2022]
|
7
|
Parker CG, Dahlgren MK, Tao RN, Li DT, Douglass EF, Shoda T, Jawanda N, Spasov KA, Lee S, Zhou N, Domaoal RA, Sutton RE, Anderson KS, Jorgensen WL, Krystal M, Spiegel DA. Illuminating HIV gp120-Ligand Recognition through Computationally-Driven Optimization of Antibody-Recruiting Molecules. Chem Sci 2014; 5:2311-2317. [PMID: 25379167 PMCID: PMC4217211 DOI: 10.1039/c4sc00484a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Here we report on the structure-based optimization of antibody-recruiting molecules targeting HIV gp120 (ARM-H). These studies have leveraged a combination of medicinal chemistry, biochemical and cellular assay analysis, and computation. Our findings have afforded an optimized analog of ARM-H, which is ~1000 fold more potent in gp120-binding and MT-2 antiviral assays than our previously reported derivative. Furthermore, computational analysis, taken together with experimental data, provides evidence that azaindole- and indole-based attachment inhibitors bind gp120 at an accessory hydrophobic pocket beneath the CD4-binding site and can also adopt multiple unique binding modes in interacting with gp120. These results are likely to prove highly enabling in the development of novel HIV attachment inhibitors, and more broadly, they suggest novel applications for ARMs as probes of conformationally flexible systems.
Collapse
Affiliation(s)
| | - Markus K Dahlgren
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Ran N Tao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Don T Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Eugene F Douglass
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Takuji Shoda
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Navneet Jawanda
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520
| | - Krasimir A Spasov
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510
| | - Sangil Lee
- Bristol-Myers Squibb, Research and Development, Wallingford, CT 06492
| | - Nannan Zhou
- Bristol-Myers Squibb, Research and Development, Wallingford, CT 06492
| | - Robert A Domaoal
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510
| | - Richard E Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520
| | - Karen S Anderson
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510 ; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06510
| | | | - Mark Krystal
- Bristol-Myers Squibb, Research and Development, Wallingford, CT 06492
| | - David A Spiegel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520 ; Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
8
|
Liu Y, Chen B, Le J, Xu Y, Song L, Chai Y, Fan G, Hong Z. Rapid and sensitive liquid chromatography with tandem mass spectrometry method for the simultaneous determination of 11 major components of Yuanhu-Baizhi herb-pair in rat perfusion fluids. J Sep Sci 2014; 37:1429-37. [DOI: 10.1002/jssc.201400054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/16/2014] [Accepted: 03/19/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Yinli Liu
- School of Pharmacy; Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical Metabolite Research; Shanghai China
| | - Bin Chen
- Analysis Lab, Shanghai Zhabei Institute for Food and Drug Control; Shanghai China
| | - Jian Le
- Chemical Division, Shanghai Institute for Food and Drug Control; Shanghai China
| | - Yanhai Xu
- School of Pharmacy; Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical Metabolite Research; Shanghai China
| | - Lin Song
- School of Pharmacy; Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical Metabolite Research; Shanghai China
| | - Yifeng Chai
- School of Pharmacy; Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical Metabolite Research; Shanghai China
| | - Guorong Fan
- School of Pharmacy; Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical Metabolite Research; Shanghai China
| | - Zhanying Hong
- School of Pharmacy; Second Military Medical University, Shanghai Key Laboratory for Pharmaceutical Metabolite Research; Shanghai China
| |
Collapse
|
9
|
Use of polarity switching for the simultaneous bioanalysis of analytes with three orders of magnitude difference in concentration by LC-MS/MS. Bioanalysis 2013; 5:1911-8. [PMID: 23905864 DOI: 10.4155/bio.13.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The challenge of quantifying two compounds in a single assay with drastic dynamic ranges is to obtain linearity without source or detector saturation at the mass spectrometer. RESULTS In positive-ionization mode, the nonlinear relationships for Desmethyl Mebeverine Acid (DMAC) were demonstrated using three common strategies to overcome this issue: using offset voltage parameters, less-sensitive product ion or 13C mass SRM transitions. On the contrary, nonlinear relationships for DMAC were overcome if negative-ionization mode was used. Due to Mebeverine analytical LLOQ, dilution was not suitable for a single assay of Mebeverine and DMAC. However, polarity switching in negative mode for DMAC was successfully found to compensate for the nonlinearity at the mass spectrometer while preserving Mebeverine linear regression model in positive mode. CONCLUSION The polarity switching strategy has demonstrated the advantage of improving linearity for analytes having different ionization polarities and three orders of magnitude difference in concentration.
Collapse
|
10
|
Wang T, Yang Z, Zhang Z, Gong YF, Riccardi KA, Lin PF, Parker DD, Rahematpura S, Mathew M, Zheng M, Meanwell NA, Kadow JF, Bender JA. Inhibitors of HIV-1 attachment. Part 10. The discovery and structure-activity relationships of 4-azaindole cores. Bioorg Med Chem Lett 2012. [PMID: 23200254 DOI: 10.1016/j.bmcl.2012.10.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of 4-azaindole oxoacetic acid piperazine benzamides was synthesized and evaluated in an effort to identify an oral HIV-1 attachment inhibitor with the potential to improve upon the pre-clinical profile of BMS-378806 (7), an initial clinical compound. Modifications at the 7-position of the 4-azaindole core modulated potency significantly and SAR showed that certain compounds with a 5-membered ring heteroaryl group at that position were the most potent. Four of the compounds with the best profiles were evaluated in a rat pharmacokinetic model and all had superior oral bioavailability and lower clearance when compared with 7.
Collapse
Affiliation(s)
- Tao Wang
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bender JA, Yang Z, Eggers B, Gong YF, Lin PF, Parker DD, Rahematpura S, Zheng M, Meanwell NA, Kadow JF. Inhibitors of HIV-1 attachment. Part 11: the discovery and structure-activity relationships associated with 4,6-diazaindole cores. Bioorg Med Chem Lett 2012. [PMID: 23206859 DOI: 10.1016/j.bmcl.2012.10.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of HIV-1 attachment inhibitors containing a 4,6-diazaindole core were examined in an effort to identify a compound which improved upon the potency and oral exposure of BMS-488043 (2). BMS-488043 (2) is a 6-azaindole-based HIV-1 attachment inhibitor which established proof-of-concept for this mechanism in human clinical studies but required high doses and concomitant administration of a high fat meal to achieve efficacious exposures. Based on previous studies in indole and azaindole scaffolds, SAR investigation was concentrated around the key 7-position in the 4,6-diazaindole series and led to the discovery of molecules with 5- to 20-fold increases in potency and three- to seven-fold increases in exposure over 2 in a rat PK studies.
Collapse
Affiliation(s)
- John A Bender
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sun H, Yin Q, Zhang A, Wang X. UPLC-MS/MS performing pharmacokinetic and biodistribution studies of rhein. J Sep Sci 2012; 35:2063-8. [DOI: 10.1002/jssc.201200378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 04/29/2012] [Accepted: 05/03/2012] [Indexed: 11/11/2022]
|
13
|
HIV gp120 H375 is unique to HIV-1 subtype CRF01_AE and confers strong resistance to the entry inhibitor BMS-599793, a candidate microbicide drug. Antimicrob Agents Chemother 2012; 56:4257-67. [PMID: 22615295 DOI: 10.1128/aac.00639-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMS-599793 is a small molecule entry inhibitor that binds to human immunodeficiency virus type 1 (HIV-1) gp120, resulting in the inhibition of CD4-dependent entry into cells. Since BMS-599793 is currently considered a candidate microbicide drug, we evaluated its efficacy against a number of primary patient HIV isolates from different subtypes and circulating recombinant forms (CRFs) and showed that activity varied between ∼3 ρM and 7 μM at 50% effective concentrations (EC(50)s). Interestingly, CRF01_AE HIV-1 isolates consistently demonstrated natural resistance against this compound. Genotypic analysis of >1,600 sequences (Los Alamos HIV sequence database) indicated that a single amino acid polymorphism in Env, H375, may account for the observed BMS-599793 resistance in CRF01_AE HIV-1. Results of site-directed mutagenesis experiments confirmed this hypothesis, and in silico drug docking simulations identified a drug resistance mechanism at the molecular level. In addition, CRF01_AE viruses were shown to be resistant to multiple broadly neutralizing monoclonal antibodies. Thus, our results not only provide insight into how Env polymorphisms may contribute to entry inhibitor resistance but also may help to elucidate how HIV can evade some broadly neutralizing antibodies. Furthermore, the high frequency of H375 in CRF01_AE HIV-1, and its apparent nonoccurrence in other subtypes, could serve as a means for rapid identification of CRF01_AE infections.
Collapse
|
14
|
Kadow JF, Ueda Y, Meanwell NA, Connolly TP, Wang T, Chen CP, Yeung KS, Zhu J, Bender JA, Yang Z, Parker D, Lin PF, Colonno RJ, Mathew M, Morgan D, Zheng M, Chien C, Grasela D. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment 6. Preclinical and human pharmacokinetic profiling of BMS-663749, a phosphonooxymethyl prodrug of the HIV-1 attachment inhibitor 2-(4-benzoyl-1-piperazinyl)-1-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)-2-oxoethanone (BMS-488043). J Med Chem 2012; 55:2048-56. [PMID: 22356441 DOI: 10.1021/jm201218m] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BMS-663749, a phosphonooxymethyl prodrug 4 of the HIV-1 attachment inhibitor 2-(4-benzoyl-1-piperazinyl)-1-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)-2-oxoethanone (BMS-488043) (2) was prepared and profiled in a variety of preclinical in vitro and in vivo models designed to assess its ability to deliver parent drug following oral administration. The data showed that prodrug 4 had excellent potential to significantly reduce dissolution rate-limited absorption following oral dosing in humans. Clinical studies in normal healthy subjects confirmed the potential of 4, revealing that the prodrug significantly increased both the AUC and C(max) of 2 compared to a solid capsule formulation containing the parent drug upon dose escalation. These data provided guidance for further efforts to obtain an effective HIV-1 attachment inhibitor.
Collapse
Affiliation(s)
- John F Kadow
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Antiviral activity, pharmacokinetics, and safety of BMS-488043, a novel oral small-molecule HIV-1 attachment inhibitor, in HIV-1-infected subjects. Antimicrob Agents Chemother 2010; 55:722-8. [PMID: 21078951 DOI: 10.1128/aac.00759-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMS-488043 is a novel and unique oral small-molecule inhibitor of the attachment of human immunodeficiency virus type 1 (HIV-1) to CD4(+) lymphocytes. The antiviral activity, pharmacokinetics, viral susceptibility, and safety of BMS-488043 were evaluated in an 8-day monotherapy trial. Thirty HIV-1-infected study subjects were randomly assigned to sequential, safety-guided dose panels of 800 and 1,800 mg BMS-488043 or a matched placebo in a 4:1 ratio, and the drug was administered every 12 h with a high-fat meal for 7 days and on the morning of day 8. Dose-related, albeit less-than-dose-proportional, increases in plasma BMS-488043 concentrations were observed. Mean plasma HIV-1 RNA decreases from the baseline for the BMS-488043 800- and 1,800-mg dose groups on day 8 were 0.72 and 0.96 log(10) copies/ml, respectively, compared with 0.02 log(10) copies/ml for the placebo group. A lower baseline BMS-488043 50% effective concentration (EC(50)) in the active-treatment groups was predictive of a greater antiviral response. Although absolute drug exposure was not associated with an antiviral response, the trough concentration (C(trough)), adjusted by the baseline EC(50) (C(trough)/EC(50)), was associated with antiviral activity. During dosing, four subjects experienced >10-fold reductions in viral susceptibility to BMS-488043, providing further support of the direct antiviral mechanism of BMS-488043. BMS-488043 was generally safe and well tolerated. These results suggest that further development of this novel class of oral HIV-1 attachment inhibitors is warranted.
Collapse
|
16
|
Liu G, Ji QC, Arnold ME. Identifying, Evaluating, and Controlling Bioanalytical Risks Resulting from Nonuniform Matrix Ion Suppression/Enhancement and Nonlinear Liquid Chromatography−Mass Spectrometry Assay Response. Anal Chem 2010; 82:9671-7. [DOI: 10.1021/ac1013018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guowen Liu
- Bioanalytical Sciences, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Qin C. Ji
- Bioanalytical Sciences, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Mark E. Arnold
- Bioanalytical Sciences, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
17
|
D'Souza HJB, Pai B, Kumar A, Shekar R, Srinivas NR, Kristjansson F. Influence of number of calibration standards within a defined range on pharmacokinetic disposition-case studies with omeprazole and clopidogrel carboxylic acid. Biomed Chromatogr 2009; 24:544-9. [DOI: 10.1002/bmc.1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|