1
|
Chip-based separation of organic and inorganic anions and multivariate analysis of wines according to grape varieties. Talanta 2021; 231:122381. [PMID: 33965044 DOI: 10.1016/j.talanta.2021.122381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/22/2022]
Abstract
This report describes the use of electrophoresis microchips integrated with contactless conductivity detection for the determination of organic acids and inorganic anions in wine samples and the subsequent classification based on the grape varieties. The best separation was achieved using a buffer composed of 30 mmol L-1 2-(N-morpholino)ethanesulfonic acid, 15 mmol L-1l-histidine and 0.05 mmol L-1 cetyltrimethylammonium bromide (pH 5.8), allowing the determination of chloride, nitrate, sulfate, oxalate, tartrate, maleate, succinate, citrate, acetate, lactate, pyroglutamate and phosphate within ca. 100 s. The relative standard deviations obtained for the migration times were lower than 2%, while the obtained values for peak areas ranged from 2.5 to 8.4%. The limits of detection achieved for all compounds ranged between 3.0 and 12.6 μmol L-1. A total of 18 wines from Brazil and Chile were successfully investigated, including red, white and rosé, and the anionic species were quantified with recovery values between 92 and 117%. A statistical difference has not been observed between the data obtained by using electrophoresis microchips integrated with contactless conductivity detection (ME-C4D) and capillary electrophoresis with ultra-violet detection (CE-UV) and thus the results from newly developed method is validated. Finally, similarities among the anionic profile of wines were investigated by using a multivariate approach, and it was possible to discriminate samples mainly by grapes varieties. Furthermore, the proposed methodology has provided instrumental simplicity and good analytical performance, demonstrating to be useful for routine quality control of wines.
Collapse
|
2
|
Twenty years of amino acid determination using capillary electrophoresis: A review. Anal Chim Acta 2021; 1174:338233. [DOI: 10.1016/j.aca.2021.338233] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/28/2022]
|
3
|
Wang Y, Olesik SV. Electrospun Nafion-Polyacrylonitrile nanofibers as an ion exchange ultrathin layer chromatographic stationary phase. Anal Chim Acta 2017; 970:82-90. [DOI: 10.1016/j.aca.2017.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 11/27/2022]
|
4
|
Ferey L, Delaunay N. Food Analysis on Electrophoretic Microchips. SEPARATION AND PURIFICATION REVIEWS 2015. [DOI: 10.1080/15422119.2015.1014049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Sha C, Fan Y, Cheng J, Cheng H. Quantitative determination of dopamine in single rat pheochromocytoma cells by microchip electrophoresis with only one high-voltage power supply. J Sep Sci 2015; 38:2357-62. [DOI: 10.1002/jssc.201500009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/04/2015] [Accepted: 04/09/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Cuicui Sha
- Department of Pharmacy; South-Central University for Nationalities; Wuhan China
| | - Yuejuan Fan
- Department of Pharmacy; South-Central University for Nationalities; Wuhan China
| | - Jieke Cheng
- Department of Chemistry and Molecular Sciences; Wuhan University; Wuhan China
| | - Han Cheng
- Department of Pharmacy; South-Central University for Nationalities; Wuhan China
| |
Collapse
|
6
|
Li S, Kiehne J, Sinoway LI, Cameron CE, Huang TJ. Microfluidic opportunities in the field of nutrition. LAB ON A CHIP 2013; 13:3993-4003. [PMID: 24056522 PMCID: PMC3875330 DOI: 10.1039/c3lc90090h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nutrition has always been closely related to human health, which is a constant motivational force driving research in a variety of disciplines. Over the years, the rapidly emerging field of microfluidics has been pushing forward the healthcare industry with the development of microfluidic-based, point-of-care (POC) diagnostic devices. Though a great deal of work has been done in developing microfluidic platforms for disease diagnoses, potential microfluidic applications in the field of nutrition remain largely unexplored. In this Focus article, we would like to investigate the potential chances for microfluidics in the field of nutrition. We will first highlight some of the recent advances in microfluidic blood analysis systems that have the capacity to detect biomarkers of nutrition. Then we will examine existing examples of microfluidic devices for the detection of specific biomarkers of nutrition or nutrient content in food. Finally, we will discuss the challenges in this field and provide some insight into the future of applied microfluidics in nutrition.
Collapse
Affiliation(s)
- Sixing Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209;
- Cell and Developmental Biology (CDB) Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Justin Kiehne
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209;
| | - Lawrence I. Sinoway
- Heart and Vascular Institute and Department of Medicine, Penn State College of Medicine, and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Craig E. Cameron
- Cell and Developmental Biology (CDB) Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209;
- Cell and Developmental Biology (CDB) Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Oliveira R, Bento F, Sella C, Thouin L, Amatore C. Direct Electroanalytical Method for Alternative Assessment of Global Antioxidant Capacity Using Microchannel Electrodes. Anal Chem 2013; 85:9057-63. [DOI: 10.1021/ac401566w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Raquel Oliveira
- Centro
de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Fátima Bento
- Centro
de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Catherine Sella
- Département
de Chimie, Ecole Normale Supérieure, UMR CNRS-ENS-UPMC 8640
PASTEUR, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Laurent Thouin
- Département
de Chimie, Ecole Normale Supérieure, UMR CNRS-ENS-UPMC 8640
PASTEUR, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Christian Amatore
- Département
de Chimie, Ecole Normale Supérieure, UMR CNRS-ENS-UPMC 8640
PASTEUR, 24 rue Lhomond, 75231 Paris Cedex 05, France
| |
Collapse
|
8
|
Recent advances in microchip electrophoresis for amino acid analysis. Anal Bioanal Chem 2013; 405:7907-18. [DOI: 10.1007/s00216-013-6830-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/25/2013] [Accepted: 02/07/2013] [Indexed: 12/27/2022]
|
9
|
Wu M, Cheng S, Li G, Wang Z, Wang Q, He P, Fang Y. Rapid Determination of Free Amino Acids in Milk by Microchip Electrophoresis Coupled with Laser-induced Fluorescence Detection. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201200446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Viglio S, Fumagalli M, Ferrari F, Bardoni A, Salvini R, Giuliano S, Iadarola P. Recent novel MEKC applications to analyze free amino acids in different biomatrices: 2009-2010. Electrophoresis 2011; 33:36-47. [DOI: 10.1002/elps.201100336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 11/07/2022]
|
11
|
|
12
|
Advanced analysis of nutraceuticals. J Pharm Biomed Anal 2011; 55:758-74. [DOI: 10.1016/j.jpba.2010.11.033] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 01/18/2023]
|
13
|
Dossi N, Toniolo R, Pizzariello A, Susmel S, Bontempelli G. A modified electrode for the electrochemical detection of biogenic amines and their amino acid precursors separated by microchip capillary electrophoresis. Electrophoresis 2011; 32:906-12. [DOI: 10.1002/elps.201000690] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 11/08/2022]
|
14
|
Herrero M, García-Cañas V, Simo C, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2010; 31:205-28. [PMID: 19967713 DOI: 10.1002/elps.200900365] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The use of capillary electromigration methods to analyze foods and food components is reviewed in this work. Papers that were published during the period April 2007 to March 2009 are included following the previous review by García-Cañas and Cifuentes (Electrophoresis, 2008, 29, 294-309). These works include the analysis of amino acids, biogenic amines, peptides, proteins, DNAs, carbohydrates, phenols, polyphenols, pigments, toxins, pesticides, vitamins, additives, small organic and inorganic ions and other compounds found in foods and beverages, as well as those applications of CE for monitoring food interactions and food processing. The use of microchips, CE-MS, chiral-CE as well as other foreseen trends in food analysis are also discussed including their possibilities in the very new field of Foodomics.
Collapse
Affiliation(s)
- Miguel Herrero
- Departamento de Caracterización de Alimentos, Instituto de Fermentaciones Industriales, Madrid 28006, Spain
| | | | | | | |
Collapse
|
15
|
Viglio S, Fumagalli M, Ferrari F, Iadarola P. MEKC: A powerful tool for the determination of amino acids in a variety of biomatrices. Electrophoresis 2010; 31:93-104. [DOI: 10.1002/elps.200900366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Poinsot VÃ, Gavard P, Feurer B, Couderc F. Recent advances in amino acid analysis by CE. Electrophoresis 2010; 31:105-21. [DOI: 10.1002/elps.200900399] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Asensio-Ramos M, Hernández-Borges J, Rocco A, Fanali S. Food analysis: A continuous challenge for miniaturized separation techniques. J Sep Sci 2009; 32:3764-800. [DOI: 10.1002/jssc.200900321] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|