1
|
A Comparative Study between Screen-Printed and Solid-Contact Electrodes for the Stability-Indicating Determination of Bromazepam. Molecules 2022; 27:molecules27217616. [DOI: 10.3390/molecules27217616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Stability-indicating methods are awesome tools to ensure the safety and efficacy of active pharmaceutical ingredients (APIs). An accurate comparative study involving the use of potentiometric sensors for the determination of bromazepam (BRZ) in the presence of its main product of degradation and impurity was performed by the fabrication of two membrane electrodes. A screen-printed electrode (SPE) and a solid-contact glassy carbon electrode (SCE) were fabricated and their performance optimized. The fabricated sensors showed a linear electrochemical response in the concentration range 1.0 × 10−6 M to 1.0 × 10−2 M. The electrodes exhibited Nernstian slopes of 59.70 mV/decade and 58.10 mV/decade for the BRZ-SPE and BRZ-SCE membrane electrodes, respectively. The electrochemical performance was greatly affected by the medium pH. They showed an almost ideal electrochemical performance between pH 3.0 and pH 6.0. The fabricated membranes were applied successfully for the quantification of BRZ in the presence of up to 90% of its degradation product. Moreover, a successful application of the fabricated electrodes was performed for the sensitive and selective quantification of BRZ in its tablet form without any pretreatment procedure.
Collapse
|
2
|
Albishri HM, Aldawsari NA, Abd El-Hady D. A Simple and Reliable Liquid Chromatographic Method for Simultaneous Determination of Five Benzodiazepine Drugs in Human Plasma. ANALYTICA 2022; 3:251-265. [DOI: 10.3390/analytica3020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Benzodiazepines (BZDs) are one of the most important drugs that have been used in the treatment of neuropsychological disorders. Indeed, BZDs are abused by drug addicts regardless of their therapeutic uses. Therefore, it was important in forensic and clinical toxicology to reach an easy and reliable method for the screening and quantification of BZDs in the human plasma matrix. In the current work, five BZDs, namely bromazepam, clonazepam, lorazepam, nordiazepam and diazepam were simultaneously separated and detected by a simple and reliable RPLC method in a human plasma matrix. Isocratic mobile elution consisting of 20 mmol L−1 phosphate buffer (pH 7.0) and methanol (50:50, v/v) on a Symmetry C18 column was employed. The flow rate, wavelength and column temperature were fixed at 1.0 mL min−1, 214 nm and 40 °C, respectively. The proposed method was validated, giving a linearity within the concentration ranges 5–500 ng mL−1 for bromazepam and diazepam, 3–500 ng mL−1 for clonazepam and lorazepam and 1–500 ng mL−1 for nordiazepam with a determination coefficient (R2) more than 0.9992. The LOD values for the selected BZDs ranged from 0.54 to 2.32 and from 1.78 to 7.65 ng mL−1 for standard methanolic and plasma matrices, respectively. Precision, accuracy, selectivity, stability, and robustness were some of the terms considered in validating the current RPLC method. Based on these results, a simple and reliable RPLC method was successfully applied to quantify BZDs in human plasma matrix appearing with recoveries ranging from 96.5 to 107.5% and interday RSD less than 4%. The current developed method was useful for rapidly screening the most commonly used BZDs in the market within their therapeutic concentration ranges.
Collapse
|
3
|
Darwish HW, A Ali N, Naguib IA, El Ghobashy MR, Al-Hossaini AM, Abdelrahman MM. Stability indicating spectrophotometric methods for quantitative determination of bromazepam and its degradation product. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118433. [PMID: 32403074 DOI: 10.1016/j.saa.2020.118433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Four simple, sensitive and selective stability indicating spectrophotometric methods are presented for quantitative determination of the benzodiazepine drug; bromazepam (BMZ) and one of its reported potential impurities and degradation product; 2-(2-amino-5-bromobenzoyl) pyridine (ABP) in methanol. Method A, is isoabsorptive point coupled with D0 method, where good linearity was obtained by measuring the absorbance of BMZ at 264 nm (Aiso) in the concentration range of 2-25 μg mL-1, and the absorbance of ABP at its λmax 396 nm in concentration range of 0.5-24 μg mL-1. Method B, is ratio subtraction; the absorbance was measured at 233 nm for BMZ using 20 μg mL-1 of ABP, while ABP was determined directly at its λmax 396 nm using methanol as a solvent. Method C, was based on measuring the total peak amplitude of the first derivative of the ratio spectra (DD1) of BMZ from 301 to 326 nm using 10 μg mL-1 of ABP as a divisor and determination of ABP at peak amplitude of 293 nm using 5 μg mL-1 of BMZ as a divisor. In method D, ratio difference method, good linearity was achieved for determination of BMZ and ABP by measuring the differences between the amplitudes of ratio spectra at 312 nm and 274 nm and differences between the amplitudes of ratio spectra at 274 nm and 312 nm, respectively. The stability of BMZ was investigated under different ICH recommended forced degradation conditions. The suggested methods were then successfully applied for determination of BMZ in its pharmaceutical formulations.
Collapse
Affiliation(s)
- Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Nesma A Ali
- Toxicology Laboratory, Forensic Medicine Authority, Justice Ministry,114 Bairam El Tounsy St., El Sayeda Zeinab, 11647 Cairo, Egypt
| | - Ibrahim A Naguib
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St., 62514 Beni-Suef, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Al-Hawiah 21974, Taif, Saudi Arabia.
| | - Mohamed R El Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt; Faculty of Pharmacy, October 6 University, October 6 City, Giza, Egypt
| | - Abdullah M Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Maha M Abdelrahman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St., 62514 Beni-Suef, Egypt
| |
Collapse
|
4
|
|
5
|
Ahmad SM, Nogueira JMF. High throughput bar adsorptive microextraction: A novel cost-effective tool for monitoring benzodiazepines in large number of biological samples. Talanta 2019; 199:195-202. [PMID: 30952246 DOI: 10.1016/j.talanta.2019.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/19/2023]
Abstract
In this work, we propose an innovative high throughput (HT) apparatus using the bar adsorptive microextraction (BAμE) technique, which enables the simultaneous enrichment of up to 100 samples. This novel configuration was combined with microliquid desorption and high-performance liquid chromatography-diode array detection to monitor trace levels of eight benzodiazepines (diazepam, prazepam, bromazepam, oxazepam, lorazepam, alprazolam, temazepam and loflazepate) in biological samples. The proposed methodology was fully developed, optimized and validated, resulting in suitable intraday and interday precision (RSD ≤ 15%), with recovery yields ranging from 33.0% to 104.5%. The lower limits of quantification were between 20.0 and 100.0 µg L-1, using 1.0 mL of urine and 0.5 mL of plasma or serum samples. The application of the proposed methodology to real matrices resulted in average sample preparation time of around 2 min per sample, demonstrating that it is user-friendly, cost-effective and a rapid decision-making tool, whenever large number of samples are involved.
Collapse
Affiliation(s)
- S M Ahmad
- Centro de Química e Bioquímica e Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - J M F Nogueira
- Centro de Química e Bioquímica e Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
6
|
Ghadi M, Hadjmohammadi MR. Extraction and determination of three benzodiazepines in aqueous and biological samples by air-assisted liquid–liquid microextraction and high-performance liquid chromatography. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-018-01590-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Hemmati M, Rajabi M, Asghari A. A twin purification/enrichment procedure based on two versatile solid/liquid extracting agents for efficient uptake of ultra-trace levels of lorazepam and clonazepam from complex bio-matrices. J Chromatogr A 2017; 1524:1-12. [DOI: 10.1016/j.chroma.2017.09.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
8
|
da Silveira Petruci JF, Liebetanz MG, Cardoso AA, Hauser PC. Absorbance detector for high performance liquid chromatography based on a deep-UV light-emitting diode at 235nm. J Chromatogr A 2017; 1512:143-146. [PMID: 28720223 DOI: 10.1016/j.chroma.2017.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 12/16/2022]
Abstract
In this communication, we describe a flow-through optical absorption detector for HPLC using for the first time a deep-UV light-emitting diode with an emission band at 235nm as light source. The detector is also comprised of a UV-sensitive photodiode positioned to enable measurement of radiation through a flow-through cuvette with round aperture of 1mm diameter and optical path length of 10mm, and a second one positioned as reference photodiode; a beam splitter and a power supply. The absorbance was measured and related to the analyte concentration by emulating the Lambert-Beer law with a log-ratio amplifier circuitry. This detector showed noise levels of 0.30mAU, which is comparable with our previous LED-based detectors employing LEDs at 280 and 255nm. The detector was coupled to a HPLC system and successfully evaluated for the determination of the anti-diabetic drugs pioglitazone and glimepiride in an isocratic separation and the benzodiazepines flurazepam, oxazepam and clobazam in a gradient elution. Good linearities (r>0.99), a precision better than 0.85% and limits of detection at sub-ppm levels were achieved.
Collapse
Affiliation(s)
- João Flavio da Silveira Petruci
- Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland; São Paulo State University (UNESP), Department of Analytical Chemistry, CEP 14800-970, Araraquara, SP, Brazil
| | - Michael G Liebetanz
- Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
| | - Arnaldo Alves Cardoso
- São Paulo State University (UNESP), Department of Analytical Chemistry, CEP 14800-970, Araraquara, SP, Brazil
| | - Peter C Hauser
- Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland.
| |
Collapse
|
9
|
Schütze G, Schwarz MJ. Therapeutic Drug Monitoring for individualised risk reduction in psychopharmacotherapy. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Matrix-free analysis of selected benzodiazepines in human serum samples using alternating trilinear decomposition modeling of fast liquid chromatography diode array detection data. Talanta 2016; 148:454-62. [DOI: 10.1016/j.talanta.2015.10.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 11/19/2022]
|
11
|
Preconcentration and determination of chlordiazepoxide and diazepam drugs using dispersive nanomaterial-ultrasound assisted microextraction method followed by high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1008:146-155. [DOI: 10.1016/j.jchromb.2015.11.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 11/30/2022]
|
12
|
Samanidou V, Kaltzi I, Kabir A, Furton KG. Simplifying sample preparation using fabric phase sorptive extraction technique for the determination of benzodiazepines in blood serum by high-performance liquid chromatography. Biomed Chromatogr 2015; 30:829-36. [DOI: 10.1002/bmc.3615] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/15/2015] [Accepted: 09/14/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry; Aristotle University of Thessaloniki; Greece
| | - Ioanna Kaltzi
- Laboratory of Analytical Chemistry, Department of Chemistry; Aristotle University of Thessaloniki; Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Kenneth G. Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| |
Collapse
|
13
|
Kuang H, Gan B, Guo L, Aguilar ZP, Xu H. Determination of Benzodiazepines in Beef by Magnetic Solid Phase Extraction and High-Performance Liquid Chromatography–Tandem Mass Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1076830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Persona K, Madej K, Knihnicki P, Piekoszewski W. Analytical methodologies for the determination of benzodiazepines in biological samples. J Pharm Biomed Anal 2015; 113:239-64. [DOI: 10.1016/j.jpba.2015.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
|
15
|
Rezaei F, Yamini Y, Moradi M, Daraei B. Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines. Anal Chim Acta 2013; 804:135-42. [DOI: 10.1016/j.aca.2013.10.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
|
16
|
Westland JL, Dorman FL. QuEChERS extraction of benzodiazepines in biological matrices. J Pharm Anal 2013; 3:509-517. [PMID: 29403862 PMCID: PMC5761015 DOI: 10.1016/j.jpha.2013.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 04/27/2013] [Indexed: 11/19/2022] Open
Abstract
Two common analytical chemical problems often encountered when using chromatographic techniques in drug analysis are matrix interferences and ion suppression. Common sample preparation often involves the dilution of the sample prior to injection onto an instrument, especially for liquid chromatography–mass spectrometry (LC–MS) analyses. This practice frequently does not minimize or eliminate conditions that may cause ion-suppression and therefore, suffer more from reduced method robustness. In order to achieve higher quality results and minimize possible interferences, various sample preparation techniques may be considered. Through the use of QuEChERS (“catchers”), a novel sample preparation technique used for high aqueous content samples, benzodiazepines can be extracted from biological fluids, such as blood and urine. This approach has shown increased recoveries of target compounds when using quantification by both external and internal standard. This increase in the recoveries has been attributed to a matrix enhancement and was determined through the use of the method of standard addition. While improving the overall analytical method for gas chromatography–mass spectrometry (GC–MS) analysis, it is not clear if this approach represents an overall benefit for laboratories that have both GC–MS and high performance liquid chromatography tandem mass spectrometry (HPLC–MS/MS) capability. Demonstrating evidence of variable ionization (enhancement, ion source inertness, etc.), the method of quantification should be focused on in future studies.
Collapse
Affiliation(s)
- Jessica L Westland
- The Pennsylvania State University, 107 Whitmore Laboratories, University Park, PA 16802, USA
| | - Frank L Dorman
- The Pennsylvania State University, 107 Whitmore Laboratories, University Park, PA 16802, USA
| |
Collapse
|
17
|
Karlonas N, Padarauskas A, Ramanavicius A, Ramanaviciene A. Mixed-mode SPE for a multi-residue analysis of benzodiazepines in whole blood using rapid GC with negative-ion chemical ionization MS. J Sep Sci 2013; 36:1437-45. [DOI: 10.1002/jssc.201201069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/23/2013] [Accepted: 01/27/2013] [Indexed: 01/10/2023]
Affiliation(s)
| | - Audrius Padarauskas
- Center of Nanotechnology and Material Science; Department of Analytical and Environmental Chemistry; Faculty of Chemistry; Vilnius University; Vilnius; Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry; Faculty of Chemistry; Vilnius University; Vilnius; Lithuania
| | - Almira Ramanaviciene
- Center of Nanotechnology and Material Science; Department of Analytical and Environmental Chemistry; Faculty of Chemistry; Vilnius University; Vilnius; Lithuania
| |
Collapse
|
18
|
Fernández P, González C, Pena MT, Carro AM, Lorenzo RA. A rapid ultrasound-assisted dispersive liquid–liquid microextraction followed by ultra-performance liquid chromatography for the simultaneous determination of seven benzodiazepines in human plasma samples. Anal Chim Acta 2013; 767:88-96. [DOI: 10.1016/j.aca.2013.01.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 11/25/2022]
|
19
|
Benzodiazepines: sample preparation and HPLC methods for their determination in biological samples. Bioanalysis 2011; 1:755-84. [PMID: 21083137 DOI: 10.4155/bio.09.43] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Benzodiazepines (BDZs) belong to a group of substances known for their sedative, antidepressive, muscle relaxant, tranquilizer, hypnotic and anticonvulsant properties. Their determination in biological fluids is essential in clinical assays as well as in forensics and toxicological studies. Researchers focus on the development of rapid, accurate, precise and sensitive methods for the determination of BDZs and their metabolites. A large number of analytical methods using different techniques have been reported, but none can be considered as the method of choice. BDZs are usually present at trace levels (microgram or nanogram per milliliter) in a complex biological matrix and the potentially interfering compounds must be isolated by various extraction techniques before analysis. An extended and comprehensive review is presented herein, focusing on sample preparation (pretreatment and extraction) and HPLC conditions applied by different authors. These methods enable bioanalysts to achieve detection limits down to 1-2 ng/ml using UV/diode array detection, readily available in most laboratories, and better than 1 ng/ml using electron capture detection, which is lower than that obtained using a nitrogen phosphorus detector. MS interfaced with electrospray ionization offered a similar sensitivity, while negative chemical ionization MS or sonic spray ionization MS provided sensitivity down to 0.1 ng/ml.
Collapse
|
20
|
Tabrizi AB, Harasi M. Applying cloud point extraction technique for the extraction of oxazepam from human urine as a colour or fluorescent derivative prior to spectroscopic analysis methods. Drug Test Anal 2011; 4:145-50. [PMID: 21381221 DOI: 10.1002/dta.259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 12/18/2010] [Accepted: 12/18/2010] [Indexed: 11/07/2022]
Abstract
Two new methods based on cloud point extraction (CPE) technique were developed and optimized for the extraction and preconcentration of oxazepam from human urine, as an azo or fluorescent derivative. The first method is a spectrophotometric one, which is based on the acid hydrolysis of the oxazepam to a benzophenone, diazotization of the benzophenone, and then the coupling with oxine to form an azo dye. The second method is a spectrofluorimetric one, which involves reduction of the target compound using Zn°/HCl at room temperature with the formation of a highly fluorescent derivative. The main factors affecting the chemical reactions and CPE were investigated and optimized systematically. Under optimum experimental conditions, the calibration graphs were linear in the range of 0.1 to 1.5 (0.05 to 2.0) µg/ml with correlation coefficients of 0.9989 (0.9985), for the CPE-spectrophotometric (CPE-spectrofluorimetric) method. The limit of detection was found to be 0.034 (0.018) µg/ml and the relative standard deviation was calculated to be 1.35 (2.52)%. Recoveries in the spiked samples ranged from 87 to 94%. Finally, the proposed methods were applied to the determination of oxazepam in human urine.
Collapse
Affiliation(s)
- Ahad Bavili Tabrizi
- Department of Medicinal Chemistry, Faculty of Pharmacy & Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
21
|
Brown SD, Melton TC. Trends in bioanalytical methods for the determination and quantification of club drugs: 2000-2010. Biomed Chromatogr 2010; 25:300-21. [DOI: 10.1002/bmc.1549] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 11/10/2022]
|
22
|
Mercolini L, Mandrioli R, Finizio G, Boncompagni G, Raggi MA. Simultaneous HPLC determination of 14 tricyclic antidepressants and metabolites in human plasma. J Sep Sci 2010; 33:23-30. [PMID: 20091716 DOI: 10.1002/jssc.200900493] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A HPLC method has been developed for the simultaneous determination of seven tricyclic antidepressants (TCAs) and seven metabolites in human plasma. The analyte separation was obtained using a C8 reversed phase column and a mobile phase composed of 68% aqueous phosphate buffer at pH 3.0 and 32% ACN. The UV detector was set at 220 nm and loxapine was used as the internal standard. A careful pre-treatment procedure for plasma samples was developed, using SPE on C2 cartridges, which gives satisfactory extraction yields (>80%) and good sample purification. The LOQs were always lower than 9.1 ng/mL and the LODs always lower than 3.1 ng/mL for all analytes. The method was successfully applied to plasma samples from depressed patients undergoing therapy with one or more TCA drugs. Precision data (RSD <8.1%), as well as accuracy results (recovery >80%), were satisfactory and no interference from other drugs was found. Hence the method seems to be suitable for the therapeutic drug monitoring of patients treated with TCAs under monotherapy or polypharmacy regimens.
Collapse
Affiliation(s)
- Laura Mercolini
- Laboratory of Pharmaco-Toxicological Analysis, Department of Pharmaceutical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
23
|
Fernández P, Vázquez C, Lorenzo RA, Carro AM, Álvarez I, Cabarcos P. Experimental design for optimization of microwave-assisted extraction of benzodiazepines in human plasma. Anal Bioanal Chem 2010; 397:677-85. [DOI: 10.1007/s00216-010-3572-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/22/2009] [Accepted: 02/11/2010] [Indexed: 11/27/2022]
|