1
|
Aly AA, Górecki T. Green Approaches to Sample Preparation Based on Extraction Techniques. Molecules 2020; 25:E1719. [PMID: 32283595 PMCID: PMC7180442 DOI: 10.3390/molecules25071719] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Preparing a sample for analysis is a crucial step of many analytical procedures. The goal of sample preparation is to provide a representative, homogenous sample that is free of interferences and compatible with the intended analytical method. Green approaches to sample preparation require that the consumption of hazardous organic solvents and energy be minimized or even eliminated in the analytical process. While no sample preparation is clearly the most environmentally friendly approach, complete elimination of this step is not always practical. In such cases, the extraction techniques which use low amounts of solvents or no solvents are considered ideal alternatives. This paper presents an overview of green extraction procedures and sample preparation methodologies, briefly introduces their theoretical principles, and describes the recent developments in food, pharmaceutical, environmental and bioanalytical chemistry applications.
Collapse
Affiliation(s)
- Alshymaa A. Aly
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Menia Governorate 61519, Egypt
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
2
|
Mouse model of human poisonings with tetramethylenedisulfotetramine: Characterization of the effect of exposure route on syndrome outcomes. Toxicol Lett 2019; 308:50-55. [PMID: 30940550 DOI: 10.1016/j.toxlet.2019.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/22/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022]
Abstract
Tetramethylenedisulfotetramine (TMDT) is a synthetic neurotoxic rodenticide and potential chemical threat agent. Signs of TMDT poisoning include convulsions which can progress into status epilepticus and death. Although clinical reports clearly show that poisoning via food and drink is the main route of exposure, experimental studies have primarily utilized parenteral routes. Here we used two different modes of oral administration of TMDT and compared the toxic outcomes with two different parenteral routes. Adult male mice were given various doses of TMDT either perorally in peanut butter or cereal pellets, or injected intraperitoneally (i.p.) or subcutaneously (s.c.). All routes produced the complete TMDT syndrome including twitches, clonic and tonic-clonic seizures and death. However potencies varied with the following rank order: i.p. > s.c. > oral (cereal)>>oral (peanut butter). Our data clearly show that ingestion of TMDT with peanut butter markedly reduces the overall syndrome severity relative to oral exposure via cereals. No significant differences were observed by substituting peanut oil for water as a vehicle for i.p. administered TMDT. In conclusion, high vs low fat food can differentially affect TMDT onset of action, probably due to differences in availability from the gastrointestinal tract. These results should be considered when searching for effective treatments for TMDT poisoning.
Collapse
|
3
|
|
4
|
Devaraj H, Pook C, Swift S, Aw KC, McDaid AJ. Profiling of headspace volatiles from Escherichia coli cultures using silicone-based sorptive media and thermal desorption GC-MS. J Sep Sci 2018; 41:4133-4141. [PMID: 30156752 DOI: 10.1002/jssc.201800684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 11/06/2022]
Abstract
Headspace sorptive extraction technique using silicone based sorptive media coated stir bars is used for the first time here to extract, identify, and quantify heavy volatile organic compounds present in Escherichia coli culture headspace. Detection of infection presence is largely accomplished in laboratories through physical sampling and subsequent growth of cultures for biochemical testing. The use of volatile biomarkers released from pathogens as indicators for pathogenic presence can vastly reduce the time needed whilst improving the success rates for infection detection. To validate this, by using a contactless headspace sorptive extraction technique, the volatile compounds released from E. coli, grown in vitro, have been extracted and identified. Two different sorptive media for extracting these headspace volatiles were compared in this study and the identified volatiles were quantified. The large phase volume and wider retention of this sorptive technique compared to traditional sampling approach enabled preconcentration and collection of wider range of volatiles towards developing an extensive database of such heavy volatiles associated with E. coli. This supplements the existing data of potential bacterial markers and use of internal standards in these tests allows semi-quantitative estimation of these compounds towards the development and optimization of novel pathogen sensing devices.
Collapse
Affiliation(s)
- Harish Devaraj
- Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Chris Pook
- School of Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Simon Swift
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kean C Aw
- Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Andrew J McDaid
- Faculty of Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Vasylieva N, Barnych B, Rand A, Inceoglu B, Gee SJ, Hammock BD. Sensitive Immunoassay for Detection and Quantification of the Neurotoxin, Tetramethylenedisulfotetramine. Anal Chem 2017; 89:5612-5619. [PMID: 28398746 PMCID: PMC5920647 DOI: 10.1021/acs.analchem.7b00846] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tetramethylenedisulfotetramine (TETS, tetramine) is a formerly used and highly neurotoxic rodenticide. Its lethality, recent history of intentional use for mass poisoning, and the absence of a known antidote raise public health concerns. Therefore, rapid, high throughput, and sensitive methods for detection and quantification of TETS are critical. Instrumental analysis method such as GC/MS is sensitive but not rapid or high throughput. Therefore, an immunoassay selective to TETS was developed. The assay shows an IC50 of 4.5 ± 1.2 ng/mL, with a limit of detection of 0.2 ng/mL, comparable to GC/MS. Performance of the immunoassay was demonstrated by a recovery study using known concentrations of TETS spiked into buffer and human and mouse serum matrices giving recoveries in the range of 80-120%. The assay demonstrated good correlation in TETS recovery with established GC/MS analysis. The immunoassay was then used to quantify TETS concentration in the serum of mice exposed to 2× LD50 dose of TETS and to monitor kinetics of TETS clearance from blood over a short period of time. TETS concentration in the serum reached 150 ng/mL without significant change over 4 h post-treatment. Results obtained with the immunoassay had good correlation with GC/MS analysis. Overall, this immunoassay is an important tool to rapidly detect and quantify levels of TETS from biological samples with high sensitivity. The assay can be adapted to multiple formats including field or hospital use.
Collapse
Affiliation(s)
- Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Amy Rand
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Bora Inceoglu
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Shirley J Gee
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| |
Collapse
|
6
|
Comparison of Different Extraction Methods in the Analysis of Volatile Compounds in Pomegranate Juice. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0410-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Hernández AM, Bernal J, Bernal JL, Martín MT, Caminero C, Nozal MJ. Simultaneous determination of nine anticoagulant rodenticides in soil and water by LC-ESI-MS. J Sep Sci 2013; 36:2593-601. [DOI: 10.1002/jssc.201300310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/20/2013] [Accepted: 05/24/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Alma M. Hernández
- I.U. CINQUIMA, Analytical Chemistry Group; University of Valladolid; Valladolid Spain
| | - José Bernal
- I.U. CINQUIMA, Analytical Chemistry Group; University of Valladolid; Valladolid Spain
| | - José L. Bernal
- I.U. CINQUIMA, Analytical Chemistry Group; University of Valladolid; Valladolid Spain
| | - María T. Martín
- I.U. CINQUIMA, Analytical Chemistry Group; University of Valladolid; Valladolid Spain
| | | | - María J. Nozal
- I.U. CINQUIMA, Analytical Chemistry Group; University of Valladolid; Valladolid Spain
| |
Collapse
|
8
|
Shakarjian MP, Velíšková J, Stanton PK, Velíšek L. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABA(A) receptors. Toxicol Appl Pharmacol 2012; 265:113-21. [PMID: 23022509 DOI: 10.1016/j.taap.2012.08.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/13/2012] [Accepted: 08/30/2012] [Indexed: 01/08/2023]
Abstract
Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic-clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4mg/kg was 100% lethal. The NMDA antagonist, ketamine (35mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic-clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic-clonic seizures and eliminated lethality through a 60min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA(A) receptor allosteric enhancer diazepam (5mg/kg) greatly reduced seizure manifestations and prevented lethality 60min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning.
Collapse
Affiliation(s)
- Michael P Shakarjian
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, NY, 10595, USA.
| | | | | | | |
Collapse
|
9
|
Chimuka L, Cukrowska E, Michel M, Buszewski B. Advances in sample preparation using membrane-based liquid-phase microextraction techniques. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Kole PL, Millership J, McElnay JC. Determination of diclofenac from paediatric urine samples by stir bar sorptive extraction (SBSE)–HPLC–UV technique. Talanta 2011; 85:1948-58. [DOI: 10.1016/j.talanta.2011.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/20/2011] [Accepted: 07/07/2011] [Indexed: 11/16/2022]
|
11
|
Fraga CG, Wahl JH, Núñez SP. Profiling of volatile impurities in tetramethylenedisulfotetramine (TETS) for synthetic-route determination. Forensic Sci Int 2011; 210:164-9. [DOI: 10.1016/j.forsciint.2011.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/28/2011] [Indexed: 11/25/2022]
|
12
|
Prieto A, Basauri O, Rodil R, Usobiaga A, Fernández L, Etxebarria N, Zuloaga O. Stir-bar sorptive extraction: A view on method optimisation, novel applications, limitations and potential solutions. J Chromatogr A 2010; 1217:2642-66. [DOI: 10.1016/j.chroma.2009.12.051] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/14/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
|
13
|
Quantitation of tetramethylene disulfotetramine in human urine using isotope dilution gas chromatography mass spectrometry (GC/MS and GC/MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2541-7. [PMID: 20392675 DOI: 10.1016/j.jchromb.2010.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/23/2010] [Accepted: 03/19/2010] [Indexed: 11/23/2022]
Abstract
Tetramethylene disulfotetramine (tetramine) is a rodenticide associated with numerous poisonings was extracted and quantified in human urine using both gas chromatography/mass spectrometry (GC/MS) and GC/tandem mass spectrometry (MS/MS). 1200 μL samples were prepared using a (13)C(4)-labeled internal standard, a 96-well format, and a polydivinyl-benzene solid phase extraction sorbent bed. Relative extraction recovery was greater than 80% at 100 ng/mL. Following extraction, samples were preconcentrated by evaporation at 60°C, and reconstituted in 50 μL acetonitrile. One-microliter was injected in a splitless mode on both instruments similarly equipped with 30 m × 0.25 mm × 25 μm, 5% phenyl-methylpolysiloxane gas chromatography columns. A quantification ion and a confirmation ion (GC/MS) or analogous selected reaction monitoring transitions (GC/MS/MS) were integrated for all reported results. The method was characterized for precision (5.92-13.4%) and accuracy (96.4-111%) using tetramine-enriched human urine pools between 5 and 250 ng/mL. The method limit of detection was calculated to be 2.34 and 3.87 ng/mL for GC/MS and GC/MS/MS, respectively. A reference range of 100 unexposed human urine samples was analyzed for potential endogenous interferences on both instruments-none were detected. Based on previous literature values for tetramine poisonings, this urinary method should be suitable for measuring low, moderate, and severe tetramine exposures.
Collapse
|
14
|
Owens J, Hok S, Alcaraz A, Koester C. Quantitative analysis of tetramethylenedisulfotetramine (tetramine) spiked into beverages by liquid chromatography-tandem mass spectrometry with validation by gas chromatography-mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4058-4067. [PMID: 19358574 DOI: 10.1021/jf900271z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD(50) = 0.1 mg/kg) used in hundreds of deliberate and accidental food poisoning events in China. This paper describes a method for the quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water, with cleanup by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography-mass spectrometry (GC-MS) operated in selected ion monitoring mode for ions m/z 212, 240, and 360. The limit of quantitation was 0.10 μg/mL by LC-MS/MS versus 0.15 μg/mL for GC-MS. Fortifications of the beverages at 2.5 and 0.25 μg/mL were recovered ranging from 73 to 128% by liquid-liquid extraction for GC-MS analysis, from 13 to 96% by SPE, and from 10 to 101% by liquid-liquid extraction for LC-MS/MS analysis.
Collapse
Affiliation(s)
- Janel Owens
- Forensic Science Center, L-091, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA.
| | | | | | | |
Collapse
|