1
|
Zhao L, Ren X, Ma H, Wang H, Li Y, Wei Q, Wu D, Ju H. Electrochemiluminescence Sensor with Controlled-Release Triggering Electrostatic Attraction Elimination Mechanism for Trenbolone Trace Detection. Anal Chem 2023; 95:13463-13469. [PMID: 37647570 DOI: 10.1021/acs.analchem.3c01359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A controlled-release strategy can meet the needs of sensitive environmental monitoring for pollutants through a self-on/off mode. In this work, an electrochemiluminescence (ECL) biosensor with controlled-release triggering electrostatic attraction elimination and biomolecular stimulated response strategies was constructed to detect environmental steroid hormones sensitively. The blocked pores on the aminated mesoporous silica nanocontainers were opened by specific binding between the trenbolone (TB) antigen and the antibody. The released l-cysteine counteracted the negative charge on the MnO2 NF surface through the redox reaction between -SH and MnO2, making the electrostatic interaction between the MnO2 NFs and the Ru(dcbpy)32+ disappear. Ru(dcbpy)32+ released an ECL signal on the electrode, thus completing the controlled-release triggering electrostatic attraction elimination strategy. In addition, with the TB antibody as the target and the competition strategy between the TB antigen and the standard substance, the constructed controlled-release ECL biosensor was used to detect the TB standard substance. Moreover, MnO2 NFs as the substrate of the ECL biosensor increased the active specific surface area of the electrode, effectively catalyzing the production of OH• and O2•-, thus endowing the ECL biosensor with coreactant-catalytic enhancement characteristic and further improving its ECL performance. This sensitive signal response brought about a low limit of detection of 2.53 fg/mL for the constructed ECL biosensor, which contributed a feasible idea for efficient trace analysis of pollutants in the environment.
Collapse
Affiliation(s)
- Lu Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yuyang Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
2
|
Duan W, Zhi H, Keefe DW, Gao B, LeFevre GH, Toor F. Sensitive and Specific Detection of Estrogens Featuring Doped Silicon Nanowire Arrays. ACS OMEGA 2022; 7:47341-47348. [PMID: 36570182 PMCID: PMC9774403 DOI: 10.1021/acsomega.1c00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Estrogens and estrogen-mimicking compounds in the aquatic environment are known to cause negative impacts to both ecosystems and human health. In this initial proof-of-principle study, we developed a novel vertically oriented silicon nanowire (vSiNW) array-based biosensor for low-cost, highly sensitive and selective detection of estrogens. The vSiNW arrays were formed using an inexpensive and scalable metal-assisted chemical etching (MACE) process. A vSiNW array-based p-n junction diode (vSiNW-diode) transducer design for the biosensor was used and functionalized via 3-aminopropyltriethoxysilane (APTES)-based silane chemistry to bond estrogen receptor-alpha (ER-α) to the surface of the vSiNWs. Following receptor conjugation, the biosensors were exposed to increasing concentrations of estradiol (E2), resulting in a well-calibrated sensor response (R 2 ≥ 0.84, 1-100 ng/mL concentration range). Fluorescence measurements quantified the distribution of estrogen receptors across the vSiNW array compared to planar Si, indicating an average of 7 times higher receptor presence on the vSiNW array surface. We tested the biosensor's target selectivity by comparing it to another estrogen (estrone [E1]) and an androgen (testosterone), where we measured a high positive electrical biosensor response after E1 exposure and a minimal response after testosterone. The regeneration capacity of the biosensor was tested following three successive rinses with phosphate buffer solution (PBS) between hormone exposure. Traditional horizontally oriented Si NW field effect transistor (hSiNW-FET)-based biosensors report electrical current changes at the nanoampere (nA) level that require bulky and expensive measurement equipment making them unsuitable for field measurements, whereas the reported vSiNW-diode biosensor exhibits current changes in the microampere (μA) range, demonstrating up to 100-fold electrical signal amplification, thus enabling sensor signal measurement using inexpensive electronics. The highly sensitive and specific vSiNW-diode biosensor developed here will enable the creation of low-cost, portable, field-deployable biosensors that can detect estrogenic compounds in waterways in real-time.
Collapse
Affiliation(s)
- Wenqi Duan
- Department
of Electrical and Computer Engineering, University of Iowa, 205 North Madison Street, Iowa City, Iowa 52242, United States
- Iowa
Technology Institute, University of Iowa, 330 South Madison Street, Iowa City, Iowa 52242, United States
| | - Hui Zhi
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United
States
- IIHR−Hydroscience
& Engineering, 100
C. Maxwell Stanley Hydraulics Laboratory, Iowa
City, Iowa 52242, United States
| | - Daniel W. Keefe
- Department
of Electrical and Computer Engineering, University of Iowa, 205 North Madison Street, Iowa City, Iowa 52242, United States
- Iowa
Technology Institute, University of Iowa, 330 South Madison Street, Iowa City, Iowa 52242, United States
| | - Bingtao Gao
- Department
of Electrical and Computer Engineering, University of Iowa, 205 North Madison Street, Iowa City, Iowa 52242, United States
- Iowa
Technology Institute, University of Iowa, 330 South Madison Street, Iowa City, Iowa 52242, United States
| | - Gregory H. LeFevre
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United
States
- IIHR−Hydroscience
& Engineering, 100
C. Maxwell Stanley Hydraulics Laboratory, Iowa
City, Iowa 52242, United States
| | - Fatima Toor
- Department
of Electrical and Computer Engineering, University of Iowa, 205 North Madison Street, Iowa City, Iowa 52242, United States
- Iowa
Technology Institute, University of Iowa, 330 South Madison Street, Iowa City, Iowa 52242, United States
| |
Collapse
|
3
|
Theoretical and experimental findings regarding the electroanalysis of dienestrol in natural waters using a silver nanoparticles/single-walled carbon nanotubes-based amperometric sensor. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Rodrigues MF, Pereira I, Morais RL, Lobón GS, Gil EDS, Vaz BG. A New Strategy for the Analysis of Steroid Hormones in Industrial Wastewaters by Paper Spray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2250-2257. [PMID: 32930580 DOI: 10.1021/jasms.0c00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new approach using paper spray ionization mass spectrometry (PSI-MS) for the analysis of steroid hormones in wastewater samples has been demonstrated. Triangular papers containing paraffin barriers as microfluidic channels were used to direct the sample solution to the paper tip, preventing the sample from spreading over the corners of the paper. The method was used to analyze the hormones levonorgestrel and algestone acetophenide in industrial wastewaters. Analytical curves presented a correlation coefficient (R2) above 0.99. Limits of quantification were below 2.3 ppm and limits of detection below 0.7 ppm. Values of precision (coefficient of variation) and accuracy (relative error) were less than 15% for all analyses. Recovery results ranged from 82% to 102%. Levonorgestrel was also analyzed by high-performance liquid chromatography coupled to mass spectrometry in order to compare the analytical performance with PSI-MS. No statistically significant differences were found between both methods. This study demonstrates the usefulness of PSI-MS for rapid analysis of hormones in industrial wastewater samples and also indicates its potential to be employed as a simple and reliable analytical method in environmental sciences.
Collapse
Affiliation(s)
| | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Ruiter Lima Morais
- Faculty of Pharmacy, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Gérman Sanz Lobón
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Eric de Souza Gil
- Faculty of Pharmacy, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| |
Collapse
|
5
|
Hilder TA, Hodgkiss JM. Molecular Mechanism of Binding between 17β-Estradiol and DNA. Comput Struct Biotechnol J 2016; 15:91-97. [PMID: 28066533 PMCID: PMC5196241 DOI: 10.1016/j.csbj.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023] Open
Abstract
Although 17β-estradiol (E2) is a natural molecule involved in the endocrine system, its widespread use in various applications has resulted in its accumulation in the environment and its classification as an endocrine-disrupting molecule. These molecules can interfere with the hormonal system, and have been linked to various adverse effects such as the proliferation of breast cancer. It has been proposed that E2 could contribute to breast cancer by the induction of DNA damage. Mass spectrometry has demonstrated that E2 can bind to DNA but the mechanism by which E2 interacts with DNA has yet to be elucidated. Using all-atom molecular dynamics simulations, we demonstrate that E2 intercalates (inserts between two successive DNA base pairs) in DNA at the location specific to estrogen receptor binding, known as the estrogen response element (ERE), and to other random sequences of DNA. Our results suggest that excess E2 has the potential to disrupt processes in the body which rely on binding to DNA, such as the binding of the estrogen receptor to the ERE and the activity of enzymes that bind DNA, and could lead to DNA damage.
Collapse
Affiliation(s)
- Tamsyn A. Hilder
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
- Computational Biophysics Group, Research School of Biology, Canberra, ACT 0200, Australia
- Correspondence to: T.A. Hilder, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand.Computational Biophysics GroupResearch School of BiologyCanberraACT0200Australia
| | - Justin M. Hodgkiss
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, New Zealand
- Correspondence to: J.M. Hodgkiss, The MacDiarmid Institute of Advanced Materials and Nanotechnology, New Zealand.The MacDiarmid Institute of Advanced Materials and NanotechnologyNew Zealand
| |
Collapse
|
6
|
Biosensor applications in the field of antibiotic research--a review of recent developments. SENSORS 2011; 11:9450-66. [PMID: 22163705 PMCID: PMC3231281 DOI: 10.3390/s111009450] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/09/2011] [Accepted: 09/21/2011] [Indexed: 01/18/2023]
Abstract
Antibacterials are among of the most important medications used in health care. However, their efficacy is increasingly impeded by a tremendous and globally spread bacterial resistance phenomenon. This bacterial resistance is accelerated by inadequate application of antibacterial drugs in humans, the widespread veterinary use of antibacterials, and antibacterial occurrence in the environment and food. Further, there is a lack of development of innovative novel drugs. Therefore, the search for novel antibacterials has to be intensified and the spread of antibacterials in the environment has to be restricted. Due to the fundamental progress in biosensor development and promising applications in the antibiotic field, this review gives for the first time an overview on the use and prospects of biosensor applications in that area. A number of reports have applied biosensors of different design and techniques to search for antibacterials in environmental and foodstuff matrices. These studies are discussed with respect to the analytical values and compared to conventional techniques. Furthermore, biosensor applications to elucidate the mode of action of antimicrobial drugs in vitro have been described. These studies were critically introduced referring to the informational value of those simulations. In summary, biosensors will be illustrated as an innovative and promising, although not yet comprehensively applied, technique in the antibacterial field.
Collapse
|
7
|
Isolation and bioaugmentation of an estradiol-degrading bacterium and its integration into a mature biofilm. Appl Environ Microbiol 2011; 77:3734-40. [PMID: 21478310 DOI: 10.1128/aem.00691-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioaugmentation can alter the potential activity as well as the composition of the naturally occurring microbial biota during bioremediation of a contaminated site. The focus of the current study is the pollutant 17β-estradiol (E2), which can cause endocrine effects and is potentially harmful to aquatic biota and to public health. The community composition and function of biofilms, originating from a wetland system, as affected by augmentation of an estradiol-degrading bacterium (EDB-LI1) under different conditions, were investigated. EDB-LI1 inoculation into biofilm from two wetland ponds representing early and advanced water treatment stages, respectively, yielded three significant observations, as follows: (i) EDB-LI1, enriched from a biofilm of a constructed wetland wastewater treatment system, was detected (by quantitative PCR [qPCR] analysis) in this environment in the augmented biofilm only; (ii) the augmented biofilm acquired the ability to remove estradiol; and (iii) the bacterial community composition (analyzed by PCR-denaturing gradient gel electrophoresis [DGGE]) of the augmented biofilm differed from that of the control biofilm. Furthermore, EDB-LI1 bioaugmentation showed a higher level of removal of estradiol with biofilms that originated from the advanced-treatment-stage wetland pond than those from the early-treatment-stage pond. Hence, the bioaugmentation efficiency of EDB-LI1 depends on both the quality of the feed water and the microbial community composition in the pond.
Collapse
|
8
|
Genotoxic effect of chronic exposure to DDT on lymphocytes, oral mucosa and breast cells of female rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:540-53. [PMID: 21556202 PMCID: PMC3084477 DOI: 10.3390/ijerph8020540] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 11/17/2022]
Abstract
The genotoxicity of some environmental contaminants may affect human health directly by damaging genetic material and thus plays an important role in cancer development. Xenoestrogens are one kind of environmental pollutants that may alter hormonal routes or directly affect DNA. The number of available biomarkers used to assess genetic risk and cancer is very extensive. The present study evaluated genotoxicity produced by the pesticide DDT on systemic and mammary gland cells obtained from adult female Wistar rats. Oral mucosa cells micronuclei were assessed; the comet assay in peripheral blood-isolated lymphocytes and mammary epithelial cells was also carried out. Additionally, oxidative stress was studied in mammary tissue through a lipid peroxidation assay. Our data showed an increase in lipid peroxidation, product of an increase in free oxygen radical levels, which leads to an oxidative stress status. Our results suggest that DDT is genotoxic, not only for lymphocytes but also to mammary epithelial cells.
Collapse
|