1
|
Segmented two-dimensional liquid chromatography. Proof of concept study. J Chromatogr A 2023; 1691:463811. [PMID: 36731333 DOI: 10.1016/j.chroma.2023.463811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
The separation in liquid chromatography is defined either by the space domain where it proceeds until the least retained analyte reaches the outlet of the column or by the time when individual analytes elute out of the column. These two approaches lead to the four possible combinations of two-dimensional liquid chromatography with online space x time coupling being the least experimentally feasible. Here, we show the development of a novel two-dimensional liquid chromatography method combining separation defined by space and the conventional elution-based separation. First-dimension column consisted of four capillary segments coupled serially via two-position six-port valves allowing an online and comprehensive transfer of analytes from the first to the second dimension. After initial experiments using homemade monolithic capillary columns, we tested commercially available columns in both dimensions. We ended with the combination of packed capillary columns in the first dimension and monolithic capillary column in the second dimension. We used a reversed-phase retention mechanism in the first spatial dimension, while HILIC was in the second, time-based dimension. We also developed a theoretical model to describe the proposed two-dimensional separation that was further confirmed by utilizing both an isocratic and gradient elution in the second dimension. Finally, we applied our experimental setup to separate neurotransmitters contained in human urine.
Collapse
|
2
|
Sharma B, Yadav DK. Metabolomics and Network Pharmacology in the Exploration of the Multi-Targeted Therapeutic Approach of Traditional Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233243. [PMID: 36501282 PMCID: PMC9737206 DOI: 10.3390/plants11233243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 05/20/2023]
Abstract
Metabolomic is generally characterized as a comprehensive and the most copious analytical technique for the identification of targeted and untargeted metabolite diversity in a biological system. Recently, it has exponentially been used for phytochemical analysis and variability among plant metabolites, followed by chemometric analysis. Network pharmacology analysis is a computational technique used for the determination of multi-mechanistic and therapeutic evaluation of chemicals via interaction with the genomes involved in targeted or untargeted diseases. In considering the facts, the present review aims to explore the role of metabolomics and network pharmacology in the scientific validation of therapeutic claims as well as to evaluate the multi-targeted therapeutic approach of traditional Indian medicinal plants. The data was collected from different electronic scientific databases such as Google Scholar, Science Direct, ACS publication, PubMed, Springer, etc., using different keywords such as metabolomics, techniques used in metabolomics, chemometric analysis, a bioinformatic tool for drug discovery and development, network pharmacology, methodology and its role in biological evaluation of chemicals, etc. The screened articles were gathered and evaluated by different experts for their exclusion and inclusion in the final draft of the manuscript. The review findings suggest that metabolomics is one of the recent most precious and effective techniques for metabolite identification in the plant matrix. Various chemometric techniques are copiously used for metabolites discrimination analysis hence validating the unique characteristic of herbal medicines and their derived products concerning their authenticity. Network pharmacology remains the only option for the unique and effective analysis of hundreds of chemicals or metabolites via genomic interaction and thus validating the multi-mechanistic and therapeutic approach to explore the pharmacological aspects of herbal medicines for the management of the disease.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA
| | - Dinesh Kumar Yadav
- Department of Pharmacognosy, SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India
- Correspondence: ; Tel.: +91-7042348251
| |
Collapse
|
3
|
Le Droumaguet B, Guerrouache M, Carbonnier B. Contribution of the "Click Chemistry" Toolbox for the Design, Synthesis, and Resulting Applications of Innovative and Efficient Separative Supports: Time for Assessment. Macromol Rapid Commun 2022; 43:e2200210. [PMID: 35700224 DOI: 10.1002/marc.202200210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Indexed: 12/21/2022]
Abstract
The last two decades have seen the rapid expansion of click chemistry methodology in various domains closely related to organic chemistry. It has notably been widely developed in the area of surface chemistry, mainly because of the high-yielding character of reactions of the "click" type. Especially, this powerful chemical reaction toolbox has been adapted to the preparation of stationary phases from the corresponding chromatographic supports. A plethora of selectors can thus be immobilized on either organic, inorganic, or hybrid stationary phases that can be used in different chromatographic modes. This review first highlights the few different chemical ligation strategies of the "click" type that are up to now mainly devoted to the development of functionalized supports for separation sciences. Then, it gives in a second part an up-to-date survey of the different studies dedicated to the preparation of click chemistry-based chromatographic supports while highlighting the powerful and versatile character of the "click" ligation strategy for the design, synthesis, and developments of more and more complex systems that can find promising applications in the area of analytical sciences, in domains as varied as enantioselective separation, glycomics, proteomics, genomics, metabolomics, etc.
Collapse
Affiliation(s)
- Benjamin Le Droumaguet
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| | - Mohamed Guerrouache
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| | - Benjamin Carbonnier
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| |
Collapse
|
4
|
Wang S, Cao J, Deng J, Hou X, Hao E, Zhang L, Yu H, Li P. Chemical characterization of flavonoids and alkaloids in safflower ( Carthamus tinctorius L.) by comprehensive two-dimensional hydrophilic interaction chromatography coupled with hybrid linear ion trap Orbitrap mass spectrometry. Food Chem X 2021; 12:100143. [PMID: 34712950 PMCID: PMC8529507 DOI: 10.1016/j.fochx.2021.100143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 10/31/2022] Open
Abstract
Safflower (Carthamus tinctorius L.) is a famous food additive and herbal medicine in China. In the present research, an online comprehensive two-dimensional hydrophilic interaction chromatography coupled to a diode array detector and a hybrid linear ion trap-Orbitrap mass spectrometry (HILIC × HILIC-DAD-ESI/HRMS/MS n ) platform was developed to analyze the flavonoids and alkaloids in safflower. By combining with an XBridge Amide column (150 mm × 4.6 mm, 3.5 μm) and an Ultimate amide column (50 mm × 4.6 mm, 5 μm), the system orthogonality reached 88% and a total of 231 peaks were detected. Altogether 93 compounds, including 75 flavonoids and their glycosides and 10 alkaloids were unambiguously or tentatively identified in both negative and positive ion modes, using accurate mass and MS fragment data. Among them, 5 compounds were discovered and reported from safflower for the first time. The established HILIC × HILIC platform should be a powerful tool for the separation and characterization of complicated matrices in natural herbs.
Collapse
Affiliation(s)
- Songsong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jiliang Cao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jiagang Deng
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Hou
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Erwei Hao
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lei Zhang
- Laboratory Animal Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
5
|
Zhou W, Liu Y, Wang J, Guo Z, Shen A, Liu Y, Liang X. Application of two‐dimensional liquid chromatography in the separation of traditional Chinese medicine. J Sep Sci 2019; 43:87-104. [DOI: 10.1002/jssc.201900765] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Weijia Zhou
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
- College of Fisheries and Life ScienceDalian Ocean University Dalian P. R. China
| | - Yanming Liu
- Shandong Institute of Food and Drug Control Jinan P. R. China
| | - Jixia Wang
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Aijin Shen
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| |
Collapse
|
6
|
Cao JL, Wei JC, Chen MW, Su HX, Wan JB, Wang YT, Li P. Application of two-dimensional chromatography in the analysis of Chinese herbal medicines. J Chromatogr A 2014; 1371:1-14. [DOI: 10.1016/j.chroma.2014.10.078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 10/07/2014] [Accepted: 10/25/2014] [Indexed: 02/04/2023]
|
7
|
Chalcraft KR, McCarry BE. Tandem LC columns for the simultaneous retention of polar and nonpolar molecules in comprehensive metabolomics analysis. J Sep Sci 2013; 36:3478-85. [DOI: 10.1002/jssc.201300779] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Kenneth R. Chalcraft
- Department of Chemistry and Chemical Biology; McMaster University; Hamilton Ontario Canada
| | - Brian E. McCarry
- Department of Chemistry and Chemical Biology; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
8
|
Woods GC, Simpson MJ, Simpson AJ. Oxidized sterols as a significant component of dissolved organic matter: evidence from 2D HPLC in combination with 2D and 3D NMR spectroscopy. WATER RESEARCH 2012; 46:3398-3408. [PMID: 22503587 DOI: 10.1016/j.watres.2012.03.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
The elucidation of molecular structures present in dissolved organic matter (DOM) has the potential to unlock many of the queries associated with organic precursors, diagenetic processes and reactivity of this highly complex material. Suwannee River DOM was extensively fractionated by two dimensional hydrophilic interaction chromatography (HILIC)/HILIC and fractions were analyzed via a suite of two and three-dimensional NMR experiments. HILIC provided more greatly resolved fractions with a second dimension and enabled extensive and in-depth NMR analyses. The composite NMR experiments provide strong evidence for highly oxidized sterols as major structural components present in one of the most simplified and subsequently resolved fractions. Further interpretation of data on other fractions across the polarity gradient likewise supports the presence of alicyclic structures present with considerable hydroxyl groups, carboxylic acids and methyl groups associated with quaternary carbon suggesting that further sterol- and hopanoid-type structures are potentially dominant throughout DOM.
Collapse
Affiliation(s)
- Gwen C Woods
- Department of Chemistry, University of Toronto, Scarborough, Ontario, Canada
| | | | | |
Collapse
|
9
|
Cai X, Guo Z, Xue X, Xu J, Zhang X, Liang X. Two-dimensional liquid chromatography separation of peptides using reversed-phase/weak cation-exchange mixed-mode column in first dimension. J Chromatogr A 2012; 1228:242-9. [DOI: 10.1016/j.chroma.2011.06.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
|
10
|
Guo H, Liu R, Yang J, Yang B, Liang X, Chu C. A novel click lysine zwitterionic stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A 2012; 1223:47-52. [DOI: 10.1016/j.chroma.2011.12.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 11/26/2022]
|
11
|
Liang Z, Li K, Wang X, Ke Y, Jin Y, Liang X. Combination of off-line two-dimensional hydrophilic interaction liquid chromatography for polar fraction and two-dimensional hydrophilic interaction liquid chromatography×reversed-phase liquid chromatography for medium-polar fraction in a traditional Chinese medicine. J Chromatogr A 2011; 1224:61-9. [PMID: 22218331 DOI: 10.1016/j.chroma.2011.12.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 12/03/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
Two-dimensional liquid chromatography (2-D LC) has been widely used for the analysis of complex samples owing to its great improvement in separation selectivity and peak capacity. However, one 2-D LC system may not be enough to meet the separation requirements due to the complexity of certain samples and respective limitations of two separation modes. In this work, water extract of Scutellaria barbata D. Don, a traditional Chinese medicine, was fractionated into polar fraction and medium-polar fraction by means of solid phase extraction (SPE). The fraction preparation made it easy to select the corresponding combination of 2-D LC method from hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RP-LC). An off-line 2-D HILIC×HILIC to analyze the polar fraction and an off-line 2-D HILIC×RP-LC to analyze the medium-polar fraction were developed, respectively. In total, 749 peaks were detected: 206 peaks from the polar fraction by the 2-D HILIC×HILIC and 543 from the medium-polar fraction by the 2-D HILIC×RP-LC. The practical peak capacities obtained in both systems were 2698 and 2879, and the orthogonality reached 63.18% and 90.62%, respectively. The results demonstrated that the two systems were both highly orthogonal, and the peak capacities greatly increased.
Collapse
Affiliation(s)
- Zheng Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | |
Collapse
|
12
|
Zhang X, Liu Y, Guo Z, Feng J, Dong J, Fu Q, Wang C, Xue X, Xiao Y, Liang X. The herbalome—an attempt to globalize Chinese herbal medicine. Anal Bioanal Chem 2011; 402:573-81. [DOI: 10.1007/s00216-011-5533-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/26/2011] [Accepted: 10/23/2011] [Indexed: 11/29/2022]
|
13
|
Bernal J, Ares AM, Pól J, Wiedmer SK. Hydrophilic interaction liquid chromatography in food analysis. J Chromatogr A 2011; 1218:7438-52. [DOI: 10.1016/j.chroma.2011.05.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 12/01/2022]
|
14
|
Fu Q, Liang T, Zhang X, Du Y, Guo Z, Liang X. Carbohydrate separation by hydrophilic interaction liquid chromatography on a ‘click’ maltose column. Carbohydr Res 2010; 345:2690-7. [DOI: 10.1016/j.carres.2010.09.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/09/2010] [Accepted: 09/28/2010] [Indexed: 02/02/2023]
|