1
|
Lai L, Zhang M, Li T, Qu J, Xu D, Yu P, Jiang Z. Preparation and evaluation of a piperidinium-sulfonate based zwitterionic monolith for HILIC separation. J Chromatogr A 2024; 1722:464864. [PMID: 38598890 DOI: 10.1016/j.chroma.2024.464864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
In this study, a novel piperidinium-sulfonate based zwitterionic hydrophilic monolith was prepared through thermally initiated co-polymerization of a piperidinium-sulfonate monomer 3-(4-((methacryloyloxy)methyl)-1-methylpiperidin-1-ium-1-yl)propane-1-sulfonate (MAMMPS), and a hydrophilic crosslinker N,N'-methylenebisacrylamide (MBA) using n-propanol and H2O as porogenic system. Satisfactory mechanical and chemical stabilities, good repeatability and high column efficiency (120,000 N/m) were obtained on the optimal monolith. The resulting poly(MAMMPS-co-MBA) monolith showed a typical HILIC retention behavior over an ACN content range between 5 and 95 %. Furthermore, this column exhibited good separation performance for various polar compounds. Compared to quaternary ammonium-sulfonate based zwitterionic hydrophilic monolith, i.e. poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine-co-MBA), the poly(MAMMPS-co-MBA) monolith displayed stronger retention and better selectivity for the tested phenolic and amine compounds at different pH conditions. Finally, this column was applied for the separation of six sulfonamide antibiotics, and the analytical characteristics of the method were evaluated in terms of precision, repeatability, limits of detection (LOD) and quantitation (LOQ). Overall, this study not only developed a novel HILIC monolithic column, but also proved the potential of piperidinium-sulfonate based zwitterionic chemistry as stationary phase, which further increased the structure diversity of zwitterionic HILIC stationary phases.
Collapse
Affiliation(s)
- Liang Lai
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Mengyao Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Tong Li
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jiahuan Qu
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Dongsheng Xu
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Pei Yu
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Hefnawy M, El-Gendy M, Al-Salem H, Marenga H, El-Azab A, Abdel-Aziz A, Gamal AE, Alanazi M, Obaidullah A, Al-Hossaini A, Hefnawy A. Trends in monoliths: Packings, stationary phases and nanoparticles. J Chromatogr A 2023; 1691:463819. [PMID: 36724721 DOI: 10.1016/j.chroma.2023.463819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Monoliths media are gaining interest as excellent substitutes to conventional particle-packed columns. Monolithic columns show higher permeability and lower flow resistance than conventional liquid chromatography columns, providing high-throughput performance, resolution and separation in short run times. Monolithic columns with longer length, smaller inner diameter and specific selectivity to peptides or enantiomers have been played important role in hyphenated system. Monolithic stationary phases possess great efficiency, resolution, selectivity and sensitivity in the separation of complex biological samples, such as the complex mixtures of peptides for proteome analysis. The development of monolithic stationary phases has opened the new avenue in chromatographic separation science and is in turn playing much more important roles in the wide application area. Monolithic stationary phases have been widely used in fast and high efficiency one- and multi-dimensional separation systems, miniaturized devices, and hyphenated system coupled with mass spectrometers. The developing technology for preparation of monolithic stationary phases is revolutionizing the column technology for the separation of complex biological samples. These techniques using porous monoliths offer several advantages, including miniaturization and on-line coupling with analytical instruments. Additionally, monoliths are ideal support media for imprinting template-specific sites, resulting in the so-called molecularly-imprinted monoliths, with ultra-high selectivity. In this review, the origin of the concept, the differences between their characteristics and those of traditional packings, their advantages and drawbacks, theory of separations, the methods for the monoliths preparation of different forms, nanoparticle monoliths and metal-organic framework are discussed. Two application areas of monolithic metal-organic framework and nanoparticle monoliths are provided. The review article discusses the results reported in a total of 218 references. Other older references were included to illustrate the historical development of monoliths, both in preparation and types, as well as separation mechanism.
Collapse
Affiliation(s)
- Mohamed Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Manal El-Gendy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Huda Al-Salem
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hanin Marenga
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Adel El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alaa Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali El Gamal
- Department of Pharmacognosy and Medicinal, Aromatic & Poisonous Plant Research Center (MAPPRC), College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmad Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah Hefnawy
- Faculty of Medicine, Mansoura Manchester Medical Program, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Wang Q, Sun L, Wu H, Deng N, Zhao X, Zhou J, Zhang T, Han H, Jiang Z. Rapid fabrication of zwitterionic sulfobetaine vinylimidazole-based monoliths via photoinitiated copolymerization for hydrophilic interaction chromatography. J Pharm Anal 2022; 12:783-790. [DOI: 10.1016/j.jpha.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 11/26/2022] Open
|
4
|
Liao X, Chen Y, Lei M, Hou C, Li X, Wang T. Hydrophilic-interaction-based magnetically assisted matrix solid-phase dispersion extraction of carbadox and olaquindox in feeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2080-2089. [PMID: 34599509 DOI: 10.1002/jsfa.11549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Carbadox and olaquindox have been banned from feeds since 1998 by the EU because of their mutagenic, photoallergic, and carcinogenic effects. Unfortunately, owing to their outstanding effect, they are frequently abused or misused in animal husbandry. There is an urgent need to develop a sensitive and reliable method for monitoring these drugs in animal feeds. RESULTS This work reported a new method of hydrophilic-interaction-based magnetically assisted matrix solid-phase dispersion (MMSPD) extraction coupled with reversed-phase liquid chromatography-mass spectrometry for simultaneous determination of carbadox and olaquindox in animal feeds. 3-Trimethoxysilylpropyl methacrylate (γ-MAPS)-modified attapulgite (ATP) was crosslinked with γ-MAPS-modified iron(II,III) oxide (Fe3 O4 ), 1-vinyl-3-(butyl-4-sulfonate) imidazolium (VBSIm), acrylamide (AM), and N,N'-methylene-bis(acrylamide) (MBA) to synthesize ATP@Fe3 O4 @poly(VBSIm-AM-MBA) particles. The resultant particles were characterized by scanning electron microscopy, energy dispersive spectrometer, transmission electron microscopy, vibrating sample magnetometer, and Fourier transform infrared spectroscopy. Crosslinking of ATP into the magnetic particles has significantly increased the adsorption capacity of the particles. Under optimum conditions, the limits of detection (S/N = 3) were 0.3 μg kg-1 and 0.9 μg kg-1 for carbadox and olaquindox respectively. The intra-day and inter-day recoveries of the spiked targets in feed samples were in the range 83.5-98.3% with relative standard deviations of 1.0-8.3%. CONCLUSION With a simplified procedure and a low amount of sample, the proposed hydrophilic-interaction-based MMSPD method is not only useful for the determination of carbadox and olaquindox in feeds but also holds great promise for the analysis of other polar targets in solid or semisolid matrices. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xibin Liao
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Yihui Chen
- Ningbo Academy of Inspection and Quarantine, Ningbo, China
| | - Meikang Lei
- Comprehensive Technology and Service Center of Quzhou Customs, Quzhou, China
| | - Chunyan Hou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xie Li
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Tingting Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| |
Collapse
|
5
|
Desire CT, Arrua RD, Mansour FR, Bon SAF, Hilder EF. Styrene-based polymerised high internal phase emulsions using monomers in the internal phase as co-surfactants for improved liquid chromatography. RSC Adv 2022; 12:9773-9785. [PMID: 35424961 PMCID: PMC8961205 DOI: 10.1039/d1ra07705h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Poly(styrene-co-divinylbenzene)-based monoliths were prepared from the polymerisation of water-in-monomer high internal phase emulsions, where the water-soluble monomers acrylamide (AAm) or poly(ethylene glycol) diacrylate (PEGDA) (M w 258) were also included in the 90 vol% internal phase. Both AAm and PEGDA were found to act as co-surfactants, resulting in the obtainment of monoliths with greater homogeneity in some cases. As a result these materials demonstrated significantly improved chromatographic performance for the separation of a standard mixture of proteins using reversed-phase liquid chromatography, in comparison to monoliths prepared with no internal phase monomer. In particular, the columns grafted with PEGDA were capable of separating a more complex mixture consisting of seven components. The inclusion of monomers in the internal phase also allowed for the functionalisation of the monolith's surface where the degree of polymerisation that occurred in the internal phase, which was governed by the monomer content in the internal phase and initiation location, determined whether polymeric chains or a hydrogel were grafted to the surface. A monolith grafted with AAm was also found to be capable of retaining polar analytes as a result of the increase in surface hydrophilicity.
Collapse
Affiliation(s)
- Christopher T Desire
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences, University of Tasmania Hobart Australia
- University of South Australia, STEM, Future Industries Institute SA 5000 Australia
| | - R Dario Arrua
- University of South Australia, STEM, Future Industries Institute SA 5000 Australia
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Tanta University Tanta Egypt
| | - Stefan A F Bon
- Department of Chemistry, The University of Warwick Coventry CV4 7AL UK
| | - Emily F Hilder
- University of South Australia, STEM, Future Industries Institute SA 5000 Australia
| |
Collapse
|
6
|
Rapid polymerization of polyhedral oligomeric siloxane-based zwitterionic sulfoalkylbetaine monolithic column in ionic liquid for hydrophilic interaction capillary electrochromatography. J Chromatogr A 2021; 1659:462651. [PMID: 34749184 DOI: 10.1016/j.chroma.2021.462651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
A novel polyhedral oligomeric siloxane (POSS)-based zwitterionic monolithic capillary column was prepared via one-pot polymerization in ionic liquid porogen, using N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine (DMMSA) and methacrylic ethyl trimethylammonium chloride (META) as binary functional monomers, and methacryl substituted POSS as cross-linker. The pore structure, permeability and homogeneity were well tuned by optimizing the polymerization conditions. The resultant monolith was characterized by scanning electron microscopy, nitrogen adsorption/desorption isotherm and Fourier transform infrared spectroscopy. The incorporation of zwitterionic ligand (DMMSA), quaternary amine group (META) and rigid POSS skeleton endows the hybrid organic-silica monolith with high hydrophilicity, electrostatic interaction and good mechanical stability, as well as a tunable electroosmotic flow over wide pH range. A close investigation of capillary electrochromatographic separations of different types of polar compounds such as bases, nucleosides and benzoic acids on such stationary phase exhibited a retention independent column efficiency up to 118,000 plates/m (thiourea), as well as a mixed-mode hydrophilic interaction chromatography (HILIC) retention mechanism including weak electrostatic interaction, hydrophobic interaction and anion exchange.
Collapse
|
7
|
Wang Q, Zhang Q, Huang H, Zhao P, Sun L, Peng K, Liu X, Ruan M, Shao H, Crommen J, Yu P, Jiang Z. Fabrication and application of zwitterionic phosphorylcholine functionalized monoliths with different hydrophilic crosslinkers in hydrophilic interaction chromatography. Anal Chim Acta 2020; 1101:222-229. [DOI: 10.1016/j.aca.2019.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
|
8
|
Mallik AK, Guragain S, Rahman MM, Takafuji M, Ihara H. L-Lysine-derived highly selective stationary phases for hydrophilic interaction chromatography: Effect of chain length on selectivity, efficiency, resolution, and asymmetry. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201800148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Abul K. Mallik
- Department of Applied Chemistry and Chemical Engineering; Faculty of Engineering and Technology; University of Dhaka; Dhaka Bangladesh
| | - Sudhina Guragain
- Department of Applied Chemistry and Biochemistry; Faculty of Engineering; Kumamoto University; Japan (currently at Department of Earth and Planetary Science; Harvard University; Cambridge Massachusetts USA
| | - Mohammed Mizanur Rahman
- Department of Applied Chemistry and Chemical Engineering; Faculty of Engineering and Technology; University of Dhaka; Dhaka Bangladesh
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry; Faculty of Engineering; Kumamoto University; Japan (currently at Department of Earth and Planetary Science; Harvard University; Cambridge Massachusetts USA
- Kumamoto Institute for Photo-Electro Organics (Phoenics); Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry; Faculty of Engineering; Kumamoto University; Japan (currently at Department of Earth and Planetary Science; Harvard University; Cambridge Massachusetts USA
- Kumamoto Institute for Photo-Electro Organics (Phoenics); Japan
| |
Collapse
|
9
|
Komendová M, Ribeiro LF, Urban J. Controlling selectivity of polymer-based monolithic stationary phases. J Sep Sci 2019; 42:952-961. [PMID: 30576067 DOI: 10.1002/jssc.201801046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022]
Abstract
In this work, we aimed to prepare a monolithic capillary column that allowed an isocratic separation of ten dopamine precursors and metabolites in a single run. Segments of five zwitterion sulfobetaine polymer monoliths have been modified by zwitterion phoshorylcholine by using an ultraviolet-initiated two-step photografting. Columns with 0, 33, 50, 66, and 100% of modified length were prepared. Effect of length of the modified segment and mobile phase composition has been tested. All columns provided dual-retention mechanism with reversed-phase retention in highly aqueous mobile phase and hydrophilic interaction mechanism in highly organic mobile phase. The retention mechanism was controlled by the composition of the mobile phase and has been described by a three-parameter model. We have used regression parameters to characterize the retention of analyzed compounds and to study individual pathways of dopamine metabolism. Comprehensive optimization of mobile phase composition allowed to find an optimal composition of the mobile phase and stationary phase surface chemistry arrangement to achieve desired separation. Optimized columns provided an isocratic separation of all tested compounds in less than nine min.
Collapse
Affiliation(s)
- Martina Komendová
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Gökaltun A, Tuncel A. Post-polymerization modification of a new reactive monolith for reversed phase and hydrophilic interaction capillary electrochromatography of neutral, polar, and biologically active compounds. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aslıhan Gökaltun
- Hacettepe University; Chemical Engineering Department; Ankara 06532 Turkey
| | - Ali Tuncel
- Hacettepe University; Chemical Engineering Department; Ankara 06532 Turkey
| |
Collapse
|
11
|
Li H, Liu C, Wang Q, Zhou H, Jiang Z. The effect of charged groups on hydrophilic monolithic stationary phases on their chromatographic properties. J Chromatogr A 2016; 1469:77-87. [PMID: 27692647 DOI: 10.1016/j.chroma.2016.09.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 01/03/2023]
Abstract
In order to investigate the effect of charged groups present in hydrophilic monolithic stationary phases on their chromatographic properties, three charged hydrophilic monomers, i.e. N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPDA), [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETA), and 3-sulfopropyl acrylate potassium salt (SPA) were co-polymerized with the crosslinker N,N'-methylenebisacrylamide (MBA), respectively. The physicochemical properties of the three resulting charged hydrophilic monolithic columns were evaluated using scanning electron microscopy, ζ-potential analysis and micro-HPLC. High column efficiency was obtained on the three monolithic columns at a linear velocity of 1mm/s using thiourea as test compound. Comparative characterization of the three charged HILIC phases was then carried out using a set of model compounds, including nucleobases, nucleosides, benzoic acid derivatives, phenols, β-blockers and small peptides. Depending on the combination of stationary phase/mobile phase/solute, both hydrophilic interaction and other potential secondary interactions, including electrostatic interaction, hydrogen-bonding interaction, molecular shape selectivity, could contribute to the over-all retention of the analytes. Because of the strong electrostatic interaction provided by the quaternary ammonium groups in the poly (AETA-co-MBA) monolith, this cationic HILIC monolith exhibited the strongest retention for benzoic acid derivatives and small peptides with distorted peak shapes and the weakest retention for basic β-blockers. The sulfonyl groups on the poly (SPA-co-MBA) hydrophilic monolith could provide strong electrostatic attraction and hydrogen bonding for positively charged analytes and hydrogen-donor/acceptor containing analytes, respectively. Therefore, basic drugs, nucleobases and nucleotides exhibited the strongest retention on this anionic monolith. Because of the weak but distinct cation exchange properties of the zwitterionic poly (SPDA-co-MBA) hydrophilic monolith, it exhibited the best separation for most test analytes (including phenols, β-blockers and small peptides) in terms of selectivity, peak shape and analysis time. The poly (AETA-co-MBA) hydrophilic monolithic column provides the best separation of nucleobases and nucleosides. These results could guide the selection and application of these charged HILIC monoliths in the future.
Collapse
Affiliation(s)
- Haibin Li
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Chusheng Liu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
12
|
Peng L, Zhu M, Zhang L, Liu H, Zhang W. Preparation and evaluation of 3 m open tubular capillary columns with a zwitterionic polymeric porous layer for liquid chromatography. J Sep Sci 2016; 39:3736-3744. [DOI: 10.1002/jssc.201600535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Li Peng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Manman Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Haiyan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai P. R. China
| |
Collapse
|
13
|
Currivan S, Macak JM, Jandera P. Polymethacrylate monolithic columns for hydrophilic interaction liquid chromatography prepared using a secondary surface polymerization. J Chromatogr A 2015; 1402:82-93. [DOI: 10.1016/j.chroma.2015.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
|
14
|
Kip Ç, Erkakan D, Gökaltun A, Çelebi B, Tuncel A. Synthesis of a reactive polymethacrylate capillary monolith and its use as a starting material for the preparation of a stationary phase for hydrophilic interaction chromatography. J Chromatogr A 2015; 1396:86-97. [PMID: 25900740 DOI: 10.1016/j.chroma.2015.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
Abstract
Poly(3-chloro-2-hydroxypropyl methacrylate-co-ethylene dimethacrylate), poly(HPMA-Cl-co-EDMA) capillary monolith was proposed as a reactive starting material with tailoring flexibility for the preparation of monolithic stationary phases. The reactive capillary monolith was synthesized by free radical copolymerization of 3-chloro-2-hydroxypropyl methacrylate (HPMA-Cl) and ethylene dimethacrylate (EDMA). The mean pore size, the specific surface area and the permeability of poly(HPMA-Cl-co-EDMA) monoliths were controlled by adjusting porogen/monomer volume ratio, porogen composition and polymerization temperature. The porogen/monomer volume ratio was found as the most effective factor controlling the porous properties of poly(HPMA-Cl-co-EDMA) monolith. Triethanolamine (TEA-OH) functionalized polymethacrylate monoliths were prepared by using the reactive chloropropyl group of poly(HPMA-Cl-co-EDMA) monolith via one-pot and simple post-functionalization process. Poly(HPMA-Cl-co-EDMA) monolith reacted with TEA-OH was evaluated as a stationary phase in nano-hydrophilic interaction chromatography (nano-HILIC). Nucleotides, nucleosides and benzoic acid derivatives were satisfactorily separated with the plate heights up to 20μm. TEA-OH attached-poly(HPMA-Cl-co-EDMA) monolith showed a reproducible and stable retention behaviour in nano-HILIC runs. However, a decrease in the column performance (i.e. an increase in the plate height) was observed with the increasing retention factor. Hence "retention-dependent column efficiency" behaviour was shown for HILIC mode using the chromatographic data collected with the polymer based monolith synthesized.
Collapse
Affiliation(s)
- Çiğdem Kip
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey
| | - Damla Erkakan
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey
| | - Aslıhan Gökaltun
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey
| | - Bekir Çelebi
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey
| | - Ali Tuncel
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey; Hacettepe University, Division of Nanotechnology & Nanomedicine, Ankara, Turkey.
| |
Collapse
|
15
|
Wang T, Chen Y, Ma J, Zhang X, Zhang L, Zhang Y. Ionic liquid-based zwitterionic organic polymer monolithic column for capillary hydrophilic interaction chromatography. Analyst 2015; 140:5585-92. [DOI: 10.1039/c5an00662g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel ionic liquid-based zwitterionic organic polymer monolithic column was developed, by copolymerization in a quaternary porogenic solvent, for capillary hydrophilic interaction chromatography.
Collapse
Affiliation(s)
- Tingting Wang
- College of Chemical Engineering
- Ningbo University of Technology
- Ningbo 315016
- China
| | - Yihui Chen
- Xiangshan Entry-Exit Inspection and Quarantine
- Xiangshan 310014
- China
| | - Junfeng Ma
- Department of Biological Chemistry
- The Johns Hopkins University School of Medicine
- Baltimore
- USA
| | - Xiaodan Zhang
- Key Laboratory of Separation Science for Analytical Chemistry
- National Chromatographic Research and Analysis Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry
- National Chromatographic Research and Analysis Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry
- National Chromatographic Research and Analysis Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| |
Collapse
|
16
|
Liu C, Chen W, Yuan G, Xiao Y, Crommen J, Xu S, Jiang Z. Influence of the crosslinker type on the chromatographic properties of hydrophilic sulfoalkylbetaine-type monolithic columns. J Chromatogr A 2014; 1373:73-80. [DOI: 10.1016/j.chroma.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 11/16/2022]
|
17
|
An R, Weng Q, Li J. Silica-particle-supported zwitterionic polymer monolith for microcolumn liquid chromatography. J Sep Sci 2014; 37:2633-40. [PMID: 25044794 DOI: 10.1002/jssc.201400428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
A silica-particle-supported zwitterionic polymeric monolithic column, shortened as supported column (S-column), was prepared by the in situ polymerization of methacrylic acid, ethylene dimethacrylate, and 2-(dimethylamino)ethyl methacrylate in the presence of a ternary porogenic solvent containing water, methanol, and cyclohexanol in a 250 μm id fused-silica capillary prepacked with 5 μm bare silica particles. In the S-column, a thin layer of the polymers was formed around the silica particles in the form of nanoglobules, leaving the interstitial spaces between the particles free for liquid flow. The effects of the preparation conditions on the morphology of the monolith were investigated by scanning electron microscopy and backpressure measurements. The selected volumetric ratio of porogens, monomer concentration, polymerization time, and temperature are 1:1:8 (water/methanol/cyclohexanol), 25% v/v, 5 h, and 60°C, respectively. The S-column was evaluated by comparison with its conventional organic counterpart in terms of morphology, mechanical stability, permeability, swelling-shrinking behavior, capacity, and efficiency. The results demonstrate that the S-column is superior to its counterpart in all the terms with the exception of permeability. The above merits and zwitterionic property of the S-column were further confirmed by separate separations of four inorganic anions and three organic cations.
Collapse
Affiliation(s)
- Ran An
- Department of Chemistry, Liaoning Normal University, Dalian, China
| | | | | |
Collapse
|
18
|
Mallik AK, Cheah WK, Shingo K, Ejzaki A, Takafuji M, Ihara H. Highly hydrophilic and nonionic poly(2-vinyloxazoline)-grafted silica: a novel organic phase for high-selectivity hydrophilic interaction chromatography. Anal Bioanal Chem 2014; 406:4585-93. [DOI: 10.1007/s00216-014-7868-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/22/2014] [Accepted: 04/29/2014] [Indexed: 12/19/2022]
|
19
|
|
20
|
Chen Y, Wang K, Liu Y, Yang H, Yao S, Chen B, Nie L, Xu G. Improved sulfoalkylbetaine-based organic-silica hybrid monolith for high efficient hydrophilic interaction liquid chromatography of polar compounds. Electrophoresis 2014; 34:1877-85. [PMID: 23977682 DOI: 10.1002/elps.201200600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel sulfoalkylbetaine-based zwitterionic organic-silica hybrid monolith was synthesized by using 3-dimethyl-(3-(N-methacrylamido) propyl) ammonium propane sulfonate (DMMPPS, neutral sulfoalkyl-betaine monomer). The added amount of zwitterionic monomer was significantly increased when DMMPPS was used instead of the conventionally used acidic sulfoalkyl-betaine monomer, that is, the N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium betaine, and this led to a significantly improved hydrophilicity of the monolith. The DMMPPS-based organic-silica hybridmonolith exhibited good mechanical stability and excellent separation performance. About ∼20 mμ plate height (corresponding to column efficiency of ∼50,000 plates/m) was obtained for nucleoside at the linear velocity of 1 mm/s. The proposed monolithic column was successfully applied to separate purines/pyrimidines, nucleotides, and tryptic digest of bovine hemoglobin in a nano-HILIC mode, and the results demonstrated that such monolith has the potential for separation of a variety of hydrophilic substances.
Collapse
Affiliation(s)
- Yingzhuang Chen
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang J, Jia W, Lin X, Wu X, Xie Z. Phenylalanine functionalized zwitterionic monolith for hydrophobic interaction electrochromatography. Electrophoresis 2013; 34:3293-9. [DOI: 10.1002/elps.201300367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Jiabin Wang
- Institute of Food Safety and Environment Monitoring; Fuzhou University; Fuzhou P. R. China
- Institute of Biomedical and Pharmaceutical Technology; Fuzhou University; Fuzhou P. R. China
| | - Wenchao Jia
- Institute of Food Safety and Environment Monitoring; Fuzhou University; Fuzhou P. R. China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring; Fuzhou University; Fuzhou P. R. China
| | - Xiaoping Wu
- Institute of Food Safety and Environment Monitoring; Fuzhou University; Fuzhou P. R. China
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring; Fuzhou University; Fuzhou P. R. China
| |
Collapse
|
22
|
Preparation of a Novel Amino-Phosphate Zwitterionic Stationary Phase for Hydrophilic Interaction Chromatography. Chromatographia 2013. [DOI: 10.1007/s10337-013-2534-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Gunasena DN, El Rassi Z. Neutral, charged and stratified polar monoliths for hydrophilic interaction capillary electrochromatography. J Chromatogr A 2013; 1317:77-84. [PMID: 23972465 DOI: 10.1016/j.chroma.2013.07.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
Abstract
Novel polar monoliths were introduced for hydrophilic interaction capillary electrochromatography (HI-CEC). In one case, a neutral polar monolith resulted from the in situ polymerization of glyceryl methacrylate (GMM) and pentaerythritol triacrylate (PETA) in a ternary porogenic solvent. GMM and PETA possess hydroxyl functional groups, which impart the monolith with hydrophilic interaction sites. This monolith is designated as hydroxy monolith. Although the hydroxy monolith is neutral and void of fixed charges on the surface, a relatively strong cathodal EOF was observed due to the electric double layer formed by the adsorption of ions from the mobile phase, producing a bulk mobile phase flow. The second monolith is charged and referred to as AP-monolith that possesses amine/amide functionalities on its surface, and was prepared by the in situ polymerization of N-(3-aminopropyl) methacrylamide hydrochloride (NAPM) and ethylene dimethacrylate (EDMA) in the presence of cyclohexanol, dodecanol and methanol as porogens. Over the pH range studied a strong anodal EOF was observed. The AP-monolith was further exploited in HI-CEC by modifying its surface with neutral mono- and oligosaccharides to produce a series of the so called sugar modified AP-monoliths (SMAP-monolith), which are considered as stratified hydrophilic monoliths possessing a sub-layer of polar amine/amide groups and a top layer of sugar (a polyhydroxy top layer). The SMAP-monoliths can be viewed as a blend of both the hydroxy monolith and the AP-monolith. The polarity of the various monoliths seems to follow the order: hydroxy monolith<AP-monolith<SMAP-monolith. The novel monoliths were characterized over a wide range of elution conditions with a variety of polar solutes including phenols, substituted phenols, nucleic acid bases, nucleosides and nucleotides.
Collapse
Affiliation(s)
- Dilani N Gunasena
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States
| | | |
Collapse
|
24
|
Yuan G, Peng Y, Liu Z, Hong J, Xiao Y, Guo J, Smith NW, Crommen J, Jiang Z. A facile and efficient strategy to enhance hydrophilicity of zwitterionic sulfoalkylbetaine type monoliths. J Chromatogr A 2013; 1301:88-97. [DOI: 10.1016/j.chroma.2013.05.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/23/2013] [Accepted: 05/28/2013] [Indexed: 11/30/2022]
|
25
|
Jandera P, Staňková M, Hájek T. New zwitterionic polymethacrylate monolithic columns for one- and two-dimensional microliquid chromatography. J Sep Sci 2013; 36:2430-40. [DOI: 10.1002/jssc.201300337] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Pavel Jandera
- Department of Analytical Chemistry; Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Magda Staňková
- Department of Analytical Chemistry; Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Tomáš Hájek
- Department of Analytical Chemistry; Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|
26
|
Staňková M, Jandera P, Škeříková V, Urban J. Cross-linker effects on the separation efficiency on (poly)methacrylate capillary monolithic columns. Part II. Aqueous normal-phase liquid chromatography. J Chromatogr A 2013; 1289:47-57. [DOI: 10.1016/j.chroma.2013.03.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 01/03/2023]
|
27
|
Recent advances in monolithic columns for protein and peptide separation by capillary liquid chromatography. Anal Bioanal Chem 2012. [DOI: 10.1007/s00216-012-6570-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Liu Z, Peng Y, Wang T, Yuan G, Zhang Q, Guo J, Jiang Z. Preparation and application of novel zwitterionic monolithic column for hydrophilic interaction chromatography. J Sep Sci 2012. [DOI: 10.1002/jssc.201200682] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhenghua Liu
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou; China
| | - Yongbo Peng
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou; China
| | - Tingting Wang
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou; China
| | - Guangxin Yuan
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou; China
| | - Qiaoxuan Zhang
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou; China
| | - Jialiang Guo
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou; China
| | - Zhengjin Jiang
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou; China
| |
Collapse
|
29
|
Epoxy-based monoliths for capillary liquid chromatography of small and large molecules. Anal Bioanal Chem 2012; 405:2233-44. [PMID: 23114928 DOI: 10.1007/s00216-012-6486-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
A versatile epoxy-based monolith was synthesised by polycondensation polymerisation of glycidyl ether 100 with ethylenediamine using a porogenic system consisting of polyethylene glycol, M(w) = 1000, and 1-decanol. Polymerisation was performed at 80 °C for 22 h. A simple acid hydrolysis of residual epoxides resulted in a mixed diol-amino chemistry. The modified column was used successfully for hydrophilic interaction liquid chromatography (HILIC) of small molecule probes such as nucleic acid bases and nucleosides, benzoic acid derivatives, as well as for peptides released from a tryptic digest of cytochrome c. The mixed-mode chemistry allowed both hydrophilic partitioning and ion-exchange (IEX) interactions to contribute to the separation, providing flexibility in selectivity control. Residual epoxide groups were also exploited for incorporating a mixed IEX chemistry. Alternatively, the surface chemistry of the monolith pore surface rendered hydrophobic via grafting of a co-polymerised hydrophobic hydrogel. The inherent hydrophilicity of the monolith scaffold also enabled high performance separation of proteins under IEX and hydrophobic interaction modes and in the absence of non-specific interactions.
Collapse
|
30
|
Foo HC, Heaton J, Smith NW, Stanley S. Monolithic poly (SPE-co-BVPE) capillary columns as a novel hydrophilic interaction liquid chromatography stationary phase for the separation of polar analytes. Talanta 2012; 100:344-8. [DOI: 10.1016/j.talanta.2012.07.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 11/28/2022]
|
31
|
Hydrophilic properties as a new contribution for computer-aided identification of short peptides in complex mixtures. Anal Bioanal Chem 2012; 403:1939-49. [DOI: 10.1007/s00216-012-5987-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/20/2012] [Accepted: 03/27/2012] [Indexed: 12/28/2022]
|
32
|
Chen ML, Li LM, Yuan BF, Ma Q, Feng YQ. Preparation and characterization of methacrylate-based monolith for capillary hydrophilic interaction chromatography. J Chromatogr A 2012; 1230:54-60. [DOI: 10.1016/j.chroma.2012.01.065] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 11/16/2022]
|
33
|
Liu J, Ren L, Liu Y, Li H, Liu Z. Weak anion exchange chromatographic profiling of glycoprotein isoforms on a polymer monolithic capillary. J Chromatogr A 2012; 1228:276-82. [DOI: 10.1016/j.chroma.2011.08.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/13/2011] [Accepted: 08/21/2011] [Indexed: 10/17/2022]
|
34
|
Gunasena DN, El Rassi Z. Organic monoliths for hydrophilic interaction electrochromatography/chromatography and immunoaffinity chromatography. Electrophoresis 2012; 33:251-61. [PMID: 22147366 PMCID: PMC3415793 DOI: 10.1002/elps.201100523] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/10/2011] [Accepted: 10/14/2011] [Indexed: 12/19/2022]
Abstract
This article is aimed at providing a review of the progress made over the past decade in the preparation of polar monoliths for hydrophilic interaction LC (HILIC)/capillary electrochromatography (HI-CEC) and in the design of immuno-monoliths for immunoaffinity chromatography that are based on some of the polar monolith precursors used in HILIC/HI-CEC. In addition, this review article discusses some of the applications of polar monoliths by HILIC and HI-CEC, and the applications of immuno-monoliths. This article is by no means an exhaustive review of the literature; it is rather a survey of the recent progress made in the field with 83 references published in the past decade on the topics of HILIC and immunoaffinity chromatography monoliths.
Collapse
Affiliation(s)
- Dilani N. Gunasena
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071
| |
Collapse
|
35
|
Chen ML, Wei SS, Yuan BF, Feng YQ. Preparation of methacrylate-based monolith for capillary hydrophilic interaction chromatography and its application in determination of nucleosides in urine. J Chromatogr A 2011; 1228:183-92. [PMID: 21816405 DOI: 10.1016/j.chroma.2011.07.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 06/16/2011] [Accepted: 07/17/2011] [Indexed: 01/03/2023]
Abstract
A novel poly(N-acryloyltris(hydroxymethyl)aminomethane-co-pentaerythritol triacrylate) (NAHAM-co-PETA) monolith was prepared in the 100 μm i.d. capillary and investigated for capillary liquid chromatography (cLC). The polymer monolith was synthesized by in situ polymerization of NAHAM and PETA in the presence of polyethylene glycol (PEG) in dimethyl sulfoxide (DMSO) as the porogen. The porous structure of monolith was optimized by changing the ratio of NAHAM to PETA, the molecular weight and amount of PEG. To evaluate the separation performance of the resultant polymer monolith, several groups of model compounds (including nucleosides, benzoic acids and anilines) were selected to perform cLC separation. Our results showed that these model compounds can be baseline separated on the resultant poly(NAHAM-co-PETA) monolithic column with the optimized mobile phases. The column efficiency was estimated to be 87,000 plates/m for acrylamide. In addition, this monolithic column was coupled with on-line solid-phase microextraction (SPME) for the analysis of four nucleosides (uridine, adenosine, cytidine, guanosine) in urine. The limit of detection of the proposed method was in the range from 40 to 52 ng/mL. The method reproducibility was obtained by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) less than 8.3% and 10.2%, respectively. Recoveries of the target analytes from spiked urine samples were ranged from 86.5% to 106.8%.
Collapse
Affiliation(s)
- Ming-Luan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
36
|
Chen X, Tolley HD, Lee ML. Preparation of zwitterionic polymeric monolithic columns for hydrophilic interaction capillary liquid chromatography. J Sep Sci 2011; 34:2088-96. [DOI: 10.1002/jssc.201100155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/22/2011] [Accepted: 04/22/2011] [Indexed: 11/08/2022]
|
37
|
Jiang Z, Smith NW, Liu Z. Preparation and application of hydrophilic monolithic columns. J Chromatogr A 2011; 1218:2350-61. [DOI: 10.1016/j.chroma.2011.02.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 01/25/2011] [Accepted: 02/10/2011] [Indexed: 11/29/2022]
|
38
|
Aturki Z, D’Orazio G, Rocco A, Si-Ahmed K, Fanali S. Investigation of polar stationary phases for the separation of sympathomimetic drugs with nano-liquid chromatography in hydrophilic interaction liquid chromatography mode. Anal Chim Acta 2011; 685:103-10. [DOI: 10.1016/j.aca.2010.11.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/04/2010] [Accepted: 11/07/2010] [Indexed: 12/01/2022]
|
39
|
Nischang I, Teasdale I, Brüggemann O. Porous polymer monoliths for small molecule separations: advancements and limitations. Anal Bioanal Chem 2010; 400:2289-304. [DOI: 10.1007/s00216-010-4579-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
|
40
|
Ibrahim MEA, Zhou T, Lucy CA. Agglomerated silica monolithic column for hydrophilic interaction LC. J Sep Sci 2010; 33:773-8. [PMID: 20222075 DOI: 10.1002/jssc.200900698] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrophilic interaction LC (HILIC) has gained wide acceptance in recent years due to its ability to retain and separate polar compounds such as pharmaceuticals. Most commercial HILIC phases are particle based, which limit the speed with which HILIC separations can be performed. Herein, agglomerated silica monolithic columns are prepared by electrostatically attaching polyionic latex particles onto a silica monolith by simply flushing a suspension of the ionic latex through a silica monolith. Such phases retain the high efficiency and permeability of the native silica monolith, while the agglomerated phase is easy to introduce and provides excellent mass transfer. High %ACN in the mobile phase dramatically increases the efficiency and retention, consistent with HILIC behavior. Test analytes such as benzoates, nucleotides and amino acids are separated with plate heights of 25-110 microm. The high permeability of monoliths allows HILIC separations to be performed with baseline resolution in less than 15 s. Electrostatic repulsion-hydrophilic liquid interaction chromatographic retention behavior of the latex-coated monoliths is verified using amino acids as test analytes.
Collapse
|
41
|
|