1
|
Mateeva A, Kondeva-Burdina M, Mateev E, Nedialkov P, Lyubomirova K, Peikova L, Georgieva M, Zlatkov A. In Silico and Chromatographic Methods for Analysis of Biotransformation of Prospective Neuroprotective Pyrrole-Based Hydrazone in Isolated Rat Hepatocytes. Molecules 2024; 29:1474. [PMID: 38611754 PMCID: PMC11013089 DOI: 10.3390/molecules29071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In the current study, chromatographic and in silico techniques were applied to investigate the biotransformation of ethyl 5-(4-bromophenyl)-1-(2-(2-(2-hydroxybenzylidene) hydrazinyl)-2-oxoethyl)-2-methyl-1H-pyrrole-3-carboxylate (11b) in hepatocytic media. The initial chromatographic procedure was based on the employment of the conventional octadecyl stationary phase method for estimation of the chemical stability. Subsequently, a novel and rapid chromatographic approach based on a phenyl-hexyl column was developed, aiming to separate the possible metabolites. Both methods were performed on a Dionex 3000 ThermoScientific (ACM 2, Sofia, Bulgaria) device equipped with a diode array detector set up at 272 and 279 nm for analytes detection. An acetonitrile: phosphate buffer of pH 3.5: methanol (17:30:53 v/v/v) was eluted isocratically as a mobile phase with a 1 mL/min flow rate. A preliminary purification from the biological media was achieved by protein precipitation with methanol. A validation procedure was carried out, where the method was found to correspond to all ICH (Q2) and M10 set criteria. Additionally, an in silico-based approach with the online server BioTransformer 3.0 was applied in an attempt to predict the possible metabolites of the title compound 11b. It was hypothesized that four CYP450 isoforms (1A2, 2C9, 3A4, and 2C8) were involved in the phase I metabolism, resulting in the formation of 12 metabolites. Moreover, docking studies were conducted to evaluate the formation of stable complexes between 11b and the aforementioned isoforms. The obtained data indicated three metabolites as the most probable products, two of which (M9_11b and M10_11b) were synthesized by a classical approach for verification. Finally, liquid chromatography with a mass detector was implemented for comprehensive and summarized analysis, and the obtained results revealed that the metabolism of the 11b proceeds possibly with the formation of glucuronide and glycine conjugate of M11_11b.
Collapse
Affiliation(s)
- Alexandrina Mateeva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (E.M.); (L.P.); (M.G.); (A.Z.)
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria;
| | - Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (E.M.); (L.P.); (M.G.); (A.Z.)
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria;
| | - Karolina Lyubomirova
- Department of Occupational Medicine, Faculty of Public Health, Medical University—Sofia, 8 Bjalo More Str., 1527 Sofia, Bulgaria;
| | - Lily Peikova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (E.M.); (L.P.); (M.G.); (A.Z.)
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (E.M.); (L.P.); (M.G.); (A.Z.)
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (E.M.); (L.P.); (M.G.); (A.Z.)
| |
Collapse
|
2
|
Baglietto M, Benedetti B, Di Carro M, Magi E. Polar licit and illicit ingredients in dietary supplements: chemometric optimization of extraction and HILIC-MS/MS analysis. Anal Bioanal Chem 2024; 416:1679-1695. [PMID: 38334794 PMCID: PMC10899327 DOI: 10.1007/s00216-024-05173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Many dietary supplements claim the ability to enhance sports performance and to improve the fitness of the consumers. Occasionally, along with legal ingredients, illicit compounds may be added without being labelled, leading to unintended doping. Hence, the aim of this study was to develop an analytical method to determine a set of 12 polar (logDpH=7 from -2.0 to +0.3) compounds including diuretics, stimulants, β2-agonists, methylxanthines, and sweeteners. Hydrophilic interaction liquid chromatography was chosen as separation strategy, coupled with tandem mass spectrometry. The instrumental method was optimized using a two-step design of experiments (DoE). Firstly, a Plackett-Burman (PB) DoE was performed to identify the more influencing variables affecting peak areas and chromatographic resolution among temperature, water percentage in the mobile phase, and flow rate, as well as type and concentration of buffers. Secondly, a D-optimal DoE was set, considering only the most significant variables from the PB-DoE results, achieving a deeper understanding of the retention mechanism. Sample processing by salt-assisted liquid-liquid extraction was studied through DoE as well, and the whole method showed recoveries in the range 40-107% and procedural precision ≤11% for all analytes. Finally, it was applied to real samples, in which the four methylxanthines and two artificial sweeteners were detected and quantified in the range of 0.02-192 mg g-1. These values were compared to the quantities declared on the DS labels, when possible. Furthermore, a sequence of MS/MS scans allowed detection of a signal in one of the samples, structurally similar to the β2-agonist clenbuterol.
Collapse
Affiliation(s)
- Matteo Baglietto
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, 16146, Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, 16146, Genoa, Italy.
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, 16146, Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, 16146, Genoa, Italy
| |
Collapse
|
3
|
Ito A, Morishita Y, Morimoto T, Tanimizu M. Rapid determination of chromium species in environmental waters using a diol-bonded polymer-stationary column under water-rich conditions coupled with ICPMS. ANAL SCI 2024; 40:359-366. [PMID: 38228992 DOI: 10.1007/s44211-023-00475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Chromium speciation analysis in environmental water is of great significance for the monitoring of water pollution and assessing its influences on human health. This study proposes a rapid analytical approach for the simultaneous determination of Cr(VI) and Cr(III) in environmental waters by hydrophilic interaction chromatography (HILIC) coupled with ICPMS under a water-rich condition. 2,6-Pyridinedicarboxylic acid (PDCA) was used to unify Cr(III) species in various chemical forms into a stable Cr(III)-PDCA anion complex and then separated from Cr(VI) oxyanion on a diol-bonded polymer-based HILIC column. An aqueous mobile phase containing 50 mmol L-1 ammonium acetate (pH 7.0), 2 mmol L-1 PDCA, and 4% acetonitrile successfully separates chromium species as well as chloride ions. In addition, our method elutes Cr(VI) preferentially over Cr(III)-PDCA, enabling rapid determination of Cr(VI), and both chromium species were analyzed within 6.2 min. The detection limits of 0.19 μg L-1 for Cr(VI) and 0.35 μg L-1 for Cr(III) at m/z 52 under He collision mode are comparable to or better than the conventional ion exchange chromatography-ICPMS methods, and quantitative recovery was obtained from spike-recovery tests on river water samples containing various levels of matrix. Optimization experiments of the HPLC conditions indicate that the retentions of Cr(VI) and Cr(III)-PDCA are characterized by electrostatic and nonpolar interactions, respectively. The retention behavior of inorganic anions and cations in water-rich conditions observed in this study will provide new insights into the separation mechanism in polymer-based HILIC columns, which has been poorly understood.
Collapse
Affiliation(s)
- Akane Ito
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara-1, Sanda, Hyogo, 669-1330, Japan.
| | - Yuhei Morishita
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara-1, Sanda, Hyogo, 669-1330, Japan
| | - Takahiro Morimoto
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara-1, Sanda, Hyogo, 669-1330, Japan
| | - Masaharu Tanimizu
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara-1, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
4
|
Carabetta S, Di Sanzo R, Fuda S, Muscolo A, Russo M. A Predictive Model to Correlate Amino Acids and Aromatic Compounds in Calabrian Honeys. Foods 2023; 12:3284. [PMID: 37685218 PMCID: PMC10486382 DOI: 10.3390/foods12173284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
To better understand the biochemistry of the organoleptic properties of honey influencing its commercial value, a predictive model for correlating amino acid profiles to aromatic compounds was built. Because the amino acid composition of different varieties of honey plays a key role as a precursor of specific aroma bouquets, it is necessary to relate the amino acid typesetting to aromatic molecules. A selection of unifloral honeys produced in Calabria, South Italy, were used, and a new methodology based on the use of HILIC-UHPLC-ESI-MS/MS and HS-SPME-GC-MS combined with multivariate processing has been developed. This study, carried out for the first time on honey, shows its excellent potential as a modern analytical tool for a rapid multicomponent analysis of food-quality indicators. Data obtained showed strong positive linear correlations between aldehydes and isoleucine, valine, leucine, and phenylalanine. Furans are correlated with isoleucine, leucine, and phenylalanine; hydrocarbons with serine, glutamic acid, and aspartic acid; and ketones with serine, alanine, glutamine, histidine, asparagine, and lysine. Alcohols were more associated with tyrosine than esters with arginine. Proline, tryptophan, and threonine showed poor correlations with all the classes of aroma compounds.
Collapse
Affiliation(s)
- Sonia Carabetta
- Department of Agriculture, Food Chemistry, Authentication, Safety and Sensoromic Laboratory (FoCuSS Lab), Mediterranea University of Reggio Calabria, Via dell’Università, 25, Stecca 4, 89124 Reggio Calabria, Italy; (R.D.S.)
| | - Rosa Di Sanzo
- Department of Agriculture, Food Chemistry, Authentication, Safety and Sensoromic Laboratory (FoCuSS Lab), Mediterranea University of Reggio Calabria, Via dell’Università, 25, Stecca 4, 89124 Reggio Calabria, Italy; (R.D.S.)
| | - Salvatore Fuda
- Department of Agriculture, Food Chemistry, Authentication, Safety and Sensoromic Laboratory (FoCuSS Lab), Mediterranea University of Reggio Calabria, Via dell’Università, 25, Stecca 4, 89124 Reggio Calabria, Italy; (R.D.S.)
| | - Adele Muscolo
- Department of Agriculture, Soil Chemistry and Soil Ecology Laboratory, University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy
| | - Mariateresa Russo
- Department of Agriculture, Food Chemistry, Authentication, Safety and Sensoromic Laboratory (FoCuSS Lab), Mediterranea University of Reggio Calabria, Via dell’Università, 25, Stecca 4, 89124 Reggio Calabria, Italy; (R.D.S.)
| |
Collapse
|
5
|
Li Y, Guo W, Zhang Q, Yang B, Zhang Y, Yang Y, Liu G, Pan L, Zhang W, Kong D. Improved analysis ZIC-HILIC-HCD-Orbitrap method for mapping the glycopeptide by mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123852. [PMID: 37633008 DOI: 10.1016/j.jchromb.2023.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Glycosylation is one of the most common post-translational modifications (PTMs). Protein glycosylation analysis is the bottleneck to deeply understand their functions. At present, the LC-MS analysis of glycosylated post-translational modification is mainly focused on the analysis of glycopeptides. However, the factors affecting the identification of glycopeptides were not fully elucidated. In the paper, we have carefully studied the factors, e.g., HILIC materials, search engines, protein amount, gradient duration, extraction solution, etc. According to the results, HILIC materials were the most important factors affecting the glycopeptides identification, and the amphoteric sulfoalkyl betaine stationary phase enriched glycopeptides 6-fold more compared to the amphiphilic ion-bonded fully porous spherical silica stationary phase. We explored the influence of the extraction solutions on glycan identification. Comparing sodium dodecyl sulfate (SDS) and urea (UA), the results showed that N-glycolylneuraminic acid (NeuGc) type of glycan content was found to be increased 1.4-fold in the SDS compared to UA. Besides, we explored the influence of the search engine on glycopeptide identification. Comparing pGlyco3.0 and MSFragger-Glyco, it was observed that pGlyco3.0 outperformed MSFragger-Glyco in identifying glycopeptides. Then, using our optimized method we found that there was a significant difference in the distribution of monosaccharide types in plasma and brain tissue, e.g., the content of NeuAc in brain was 5-fold higher than that in plasma. To importantly, two glycoproteins (Neurexin-2 and SUN domain-containing protein 2) were also found for the first time by our method. In summary, we have comprehensively studied the factors influencing glycopeptide identification than any previous research, and the optimized method could be widely used for identifying the glycoproteins or glycolpeptides biomarkers for disease detection and therapeutic targets.
Collapse
Affiliation(s)
- Yahui Li
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenyan Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Qingning Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bingkun Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China; School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Yuyu Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yi Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China; The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guangyuan Liu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Liangyu Pan
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
6
|
Toussaint B, Immame Hassane Beck T, Surget E, Boudy V, Jaccoulet E. Exploration of the effects of chloride ions on the analysis of polar compounds at low concentrations by hydrophilic interaction liquid chromatography coupled to a charged aerosol detector: Application to tromethamine. J Sep Sci 2023; 46:e2200766. [PMID: 36621867 DOI: 10.1002/jssc.202200766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
In this study, we discuss the origin of the slightly increased response of the charged aerosol detector when low-concentration polar drugs formulated with sodium chloride are analyzed by hydrophilic interaction liquid chromatography coupled to the charged aerosol detector. In the case of tromethamine mixed with saline solutions, we investigated several levels including the mobile phase, sample matrix, and detection. We show that the analysis of the rich-salted sample results in both interactions with the mobile phase modifiers and the stationary phase during the run time. With 150 mM NaCl as a compounding solution, a slight increase in the tromethamine peak area was observed (<5.5%). Our study suggests that chloride ions in excess sequentially interact firstly with the counterions from the organic modifiers and secondly with the analyte via the stationary phase and the contribution of hydrophilic interaction liquid chromatography retention mechanisms. Because of these effects, the hydrophilic interaction liquid chromatography-charged aerosol detector analysis of drugs in saline solutions requires particular attention, and a correction factor for quantitative purposes that accounts for formulation ions remains appropriate.
Collapse
Affiliation(s)
- Balthazar Toussaint
- Département recherche et développement pharmaceutique, Etablissement pharmaceutique, Agence générale des équipements et produits de santé, AP-HP, Paris, France.,Université de Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la santé, Faculté de Pharmacie, F-75006, Paris, France
| | - Taslyne Immame Hassane Beck
- Département recherche et développement pharmaceutique, Etablissement pharmaceutique, Agence générale des équipements et produits de santé, AP-HP, Paris, France
| | - Estelle Surget
- Département recherche et développement pharmaceutique, Etablissement pharmaceutique, Agence générale des équipements et produits de santé, AP-HP, Paris, France
| | - Vincent Boudy
- Département recherche et développement pharmaceutique, Etablissement pharmaceutique, Agence générale des équipements et produits de santé, AP-HP, Paris, France.,Université de Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la santé, Faculté de Pharmacie, F-75006, Paris, France
| | - Emmanuel Jaccoulet
- Département recherche et développement pharmaceutique, Etablissement pharmaceutique, Agence générale des équipements et produits de santé, AP-HP, Paris, France
| |
Collapse
|
7
|
Lu Z, Li S, Aa N, Zhang Y, Zhang R, Xu C, Zhang S, Kong X, Wang G, Aa J, Zhang Y. Quantitative analysis of 20 purine and pyrimidine metabolites by HILIC-MS/MS in the serum and hippocampus of depressed mice. J Pharm Biomed Anal 2022; 219:114886. [PMID: 35715372 DOI: 10.1016/j.jpba.2022.114886] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Abstract
Purine and pyrimidine metabolism are vital metabolic pathways in the development, proliferation or repairment of cells or tissues associated with various diseases. Here, a simple, all-in-one injection hydrophilic interaction liquid chromatography-tandem mass spectrometry method was developed for simultaneous determination of 20 metabolites: adenine, adenosine, deoxyadenosine, adenosine 5'-monophosphate, cyclic adenosine monophosphate, hypoxanthine, xanthine, inosine, deoxyinosine, xanthosine, xanthosine 5'-monophosphate and uric acid, which are products of purine metabolism; uridine, deoxyuridine, uridine 5'-monophosphate and uracil, are products of pyrimidine metabolism; and corticosterone, methionine, acetylcholine and serotonin. To minimize interference of endogenous molecules in sample matrixes, a combination of activated carbon adsorption and a serum substitute matrix (5% bovine serum albumin in phosphate buffered saline) was utilized and jointly applied. The sensitivity, linearity, stability, precision, accuracy and extraction recovery were evaluated, and the method was demonstrated to be accurate, sensitive and reliable. An analytical strategy was successfully applied to quantitatively determine 20 metabolite levels in the serum and hippocampus of mice with chronic social defeat stress-induced depression. The results showed greatly perturbed purine metabolism in the depressed mice, which was primarily characterized by dramatic increases in hypoxanthine, xanthine and inosine in serum and reduced levels of adenine, adenosine and adenosine 5'-monophosphate in the hippocampus. These findings suggest that this novel strategy can facilitate the quantitative analysis of adenine and other purine and pyrimidine metabolites in tissue and serum and exhibits great potential in the exploration of metabolism-related mechanisms of relevant diseases.
Collapse
Affiliation(s)
- Zhenyao Lu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Sijia Li
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Nan Aa
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yuanmao Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ran Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Chen Xu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Shize Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Yue Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Gunsch MJ, Schwalm EL, Ouimet CM, Halsey HM, Hamilton SE, Bernardoni F, Jo J. Development and validation of ion-pairing HPLC-CAD chromatography for measurement of Islatravir’s phosphorylated intermediates. J Pharm Biomed Anal 2022; 213:114684. [DOI: 10.1016/j.jpba.2022.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
|
9
|
LC-MS/MS methods to quantify HCP002 in human plasma and urine: applications in a pharmacokinetic study. Bioanalysis 2022; 14:307-316. [PMID: 35195039 DOI: 10.4155/bio-2021-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: HCP002, a phosphate-modified derivative of voriconazole, can improve solubility without using the nephrotoxic solubilizer, sulfobutylether-β-cyclodextrin. To study pharmacokinetics in humans, LC-MS/MS methods to quantify HCP002 in human plasma and urine were developed and validated. Method: After protein precipitation by acetonitrile containing voriconazole-d3, HCP002 was separated on a ZORBAX SB-Aq column, and LCMS/MS analysis was performed in multi-response monitoring mode. Results: The analytical run time was 3 min. Linearity was observed over the ranges of 0.100-40.0 and 0.400-200 μg/ml in plasma and urine, respectively. Precision and accuracy were within acceptable limits. Sample stability was confirmed. Conclusion: Rapid and reproducible methods quantified HCP002 in urine, and plasma samples were established.
Collapse
|
10
|
Wang DJ, Wang DW, Fang QC, Shen Y, Zeng NJ, Yang YL, Zhang HW, Wang YQ, Sun LN. Development and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the quantification of regadenoson in human plasma and its pharmacokinetic application. J Sep Sci 2022; 45:1146-1152. [PMID: 34981883 DOI: 10.1002/jssc.202100756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022]
Abstract
Regadenoson, the first selective adenosine A2A receptor agonist, is used to perform exercise stress test during radionuclide myocardial perfusion imaging. To detect the concentration of regadenoson in human plasma, a simple, fast, and sensitive tandem mass spectrometry method was established herein. Acetonitrile was used as a protein precipitation agent. Chromatographic separation was completed in 6.5 min using a BEH HILIC column (50 × 2.1 mm, 1.7 μm). The mobile phase consisted of 10 mmol/L ammonium acetate/acetonitrile (gradient elution). To quantify regadenoson and regadenoson-d3, an API 4000 mass spectrometry in multiple reaction monitoring mode with transitions of 391.3→259.2 and 394.3→262.2, respectively, was utilized. The calibration curve was linear in the range of 0.100-50.0 μg/L, and the intrabatch and interbatch precisions were <9.7% and <13.0%, respectively, and the accuracy was 2.0-6.9%. There was no apparent matrix effect for regadenoson or regadenoson-d3. The developed method was used to study the pharmacokinetic characteristics of regadenoson in healthy Chinese subjects.
Collapse
Affiliation(s)
- Dun-Jian Wang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P. R. China
| | - Da-Wei Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Qiu-Chen Fang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P. R. China
| | - Ye Shen
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P. R. China
| | - Nv-Jin Zeng
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P. R. China
| | - Yan-Ling Yang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P. R. China
| | - Hong-Wen Zhang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P. R. China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P. R. China.,School of Pharmacy, Nanjing Medical University, Nanjing, P. R. China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P. R. China.,School of Pharmacy, Nanjing Medical University, Nanjing, P. R. China
| |
Collapse
|
11
|
Abstract
Food carbohydrates are macronutrients that are found in fruits, grains, vegetables, and milk products. These organic compounds are present in foods in the form of sugars, starches, and fibers and are composed of carbon, hydrogen, and oxygen. These wide ranging macromolecules can be classified according to their chemical structure into three major groups: low molecular weight mono- and disaccharides, intermediate molecular weight oligosaccharides, and high molecular weight polysaccharides. Notably, the digestibility of specific carbohydrate components differ and nondigestible carbohydrates can reach the large intestine intact where they act as food sources for beneficial bacteria. In this review, we give an overview of advances made in food carbohydrate analysis. Overall, this review indicates the importance of carbohydrate analytical techniques in the quest to identify and isolate health-promoting carbohydrates to be used as additives in the functional foods industry.
Collapse
Affiliation(s)
- Leonie J Kiely
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
12
|
Jia X, Yang X, Luo G, Liang Q. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal 2021; 209:114534. [PMID: 34929566 DOI: 10.1016/j.jpba.2021.114534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
In recent years, the progress of microfluidic technology has provided new tools for pharmaceutical analysis and the proposal of pharm-lab-on-a-chip is appealing for its great potential to integrate pharmaceutical test and pharmacological test in a single chip system. Here, we summarize and highlight recent advances of chip-based principles, techniques and devices for pharmaceutical test and pharmacological/toxicological test focusing on the separation and analysis of drug molecules on a chip and the construction of pharmacological models on a chip as well as their demonstrative applications in quality control, drug screening and precision medicine. The trend and challenge of microfluidic technology for pharmaceutical analysis are also discussed and prospected. We hope this review would update the insight and development of pharm-lab-on-a-chip.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Guoan Luo
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
13
|
Pawellek R, Holzgrabe U. Performance of ion pairing chromatography and hydrophilic interaction liquid chromatography coupled to charged aerosol detection for the analysis of underivatized amino acids. J Chromatogr A 2021; 1659:462613. [PMID: 34731754 DOI: 10.1016/j.chroma.2021.462613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
The charged aerosol detector (CAD) is frequently employed in liquid chromatography for the analysis of small polar and ionizable compounds such as amino acids and amino sugars, which provide a weak chromophore only. Separation of these compounds is achieved by means of ion pair chromatography (IPC), and, more recently, hydrophilic interaction chromatography (HILIC) techniques. However, as the CAD's response is highly dependent on the mobile phase composition, the substantial differences in the mobile phase composition of IPC and HILIC have a distinct impact on the detector's performance. This study was aimed at systematically comparing the performance of IPC and HILIC when coupled to the CAD. Therefore, the separation techniques characterized by their specific mobile phase compositions were evaluated for their influence on the CAD response and the signal-to-noise ratio (S/N) of the amino acids L-alanine, L-leucine, and L-phenylalanine applying the response surface methodology (RSM). The RSM results derived from flow injection analysis (FIA) indicated that the CAD response and thus the obtainable S/N are significantly higher in HILIC compared to IPC where the S/N decreased with the chain length of the applied ion-pairing reagent. In addition, an IPC and a HILIC method, respectively, were developed for the impurity profiling of the branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The beneficial effects of the HILIC conditions on the S/N observed under FIA conditions were partly offset by moderate column bleed effects when using an amide functionalized column, which facilitates the separation in the HILIC method. Satisfactory LOQs (3-10 ng on column) were obtained with both methods; however, the HILIC method was found to be slightly superior in terms of sensitivity and separation efficiency.
Collapse
Affiliation(s)
- Ruben Pawellek
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany
| | - Ulrike Holzgrabe
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany.
| |
Collapse
|
14
|
Yu J, Wey M, Firooz SK, Armstrong DW. Ionizable Cyclofructan 6-Based Stationary Phases for Hydrophilic Interaction Liquid Chromatography Using Superficially Porous Particles. Chromatographia 2021. [DOI: 10.1007/s10337-021-04063-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Shopova T, Hüppe T, Wolf B, Sessler DI, Volk T, Groesdonk HV, Kreuer S, Maurer F. Quantitative Determination of Fosfomycin in 10 μL of Plasma and Dialysate by Hydrophilic Interaction Liquid Chromatography Electrospray Ionization Mass Spectrometry. J Chromatogr Sci 2021; 59:165-174. [PMID: 33302294 DOI: 10.1093/chromsci/bmaa092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/12/2020] [Accepted: 10/17/2020] [Indexed: 11/12/2022]
Abstract
Fosfomycin is an antibiotic with a broad spectrum of activity against many multidrug-resistant bacterial strains. It is mainly excreted unchanged by the kidneys, and its half-life therefore depends on kidney function which varies considerably among individuals, and within individuals over time. Proper fosfomycin dosing thus depends on assaying blood concentration of the drug. We developed and validated a simple, sensitive and specific chromatography assay, which was coupled to electrospray ionization mass spectrometry for determination of fosfomycin. Separation of fosfomycin was based on the method of the hydrophilic interaction liquid chromatography; specifically, plasma and dialysate samples were acidified and the protein precipitated with acetonitrile. The calibration curves showed excellent coefficients of determination (R2 > 0.999) over the relevant concentration range of 25-700 μg/mL. Intraday precision was 1.1-1.2% and accuracy was -5.9% to 0.9% for quality control samples. Interday precision was 2.9-3.4% and accuracy was -3.7% to 5.5%. Extraction recovery was ≥87% and matrix effects ranged from 2.2% to 4.3%. After laboratory validation, the method was successfully applied to clinical samples.
Collapse
Affiliation(s)
- Teodora Shopova
- CBR Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Kirrberger Straße 100, D-66424 Homburg, Germany
| | - Tobias Hüppe
- CBR Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Kirrberger Straße 100, D-66424 Homburg, Germany
| | - Beate Wolf
- CBR Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Kirrberger Straße 100, D-66424 Homburg, Germany
| | - Daniel I Sessler
- Michael Cudahy Professor and Chair, Deparment of Outcome Research, Anesthesiology Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas Volk
- CBR Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Kirrberger Straße 100, D-66424 Homburg, Germany
| | - Heinrich V Groesdonk
- Deparment of Intensive Care Medicine, Helios Clinic Erfurt, Nordhäuser Straße 74, D-99089 Erfurt, Germany
| | - Sascha Kreuer
- CBR Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Kirrberger Straße 100, D-66424 Homburg, Germany
| | - Felix Maurer
- CBR Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Kirrberger Straße 100, D-66424 Homburg, Germany
| |
Collapse
|
16
|
Pawellek R, Holzgrabe U. Influence of the mobile phase composition on hyphenated ultraviolet and charged aerosol detection for the impurity profiling of vigabatrin. J Pharm Biomed Anal 2021; 201:114110. [PMID: 33971590 DOI: 10.1016/j.jpba.2021.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Recently, charged aerosol detection (CAD), a universal detection technique in liquid chromatography, has been introduced into monographs of the European Pharmacopoeia (Ph. Eur.), which now employs HPLC-UV-CAD for assessing the impurities of the drug vigabatrin. The separation of vigabatrin and its impurities is facilitated by ion pair chromatography (IPC) in the compendial method using tridecafluoroheptanoic acid (TDFHA) as ion-pairing reagent. However, the subsequent detection of the impurities by UV-CAD is considerably impaired due to the substantial amount of ion-pairing reagent applied in the method generating high levels of background noise. In this study, the influence of the mobile phase composition on the background noise of the CAD was evaluated applying response surface methodology. The model's results indicated that the chain length of the ion-pairing reagent is a predominant factor for noise generation. Thus, an alternative method for the impurity analysis of vigabatrin using mixed-mode chromatography (MMC) instead of IPC was developed. The dual separation mechanism of the MMC column enabled the choice of a mobile phase better suited for the individual requirements of the UV-CAD detectors, while maintaining excellent selectivity. The MMC method does not require the addition of a post-column solution to reduce the TDFHA concentration in the mobile phase, and, therefore, needs less instrumentation. Moreover, the sample concentration could be halved due to the improved LOQs of the impurities (<50 ng on column) and the analysis time could be shortened (30 to 20 min) due to improved separation efficiency. The MMC method was validated with respect to ICH guideline Q2(R1).
Collapse
Affiliation(s)
- Ruben Pawellek
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074, Würzburg, Germany
| | - Ulrike Holzgrabe
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074, Würzburg, Germany.
| |
Collapse
|
17
|
Ziobrowski P, Chutkowski M, Przywara M, Zapała L, Kosińska-Pezda M, Zapała W. Analysis of adsorption energy distribution in selected hydrophilic-interaction chromatography systems with amide, amine, and zwitterionic stationary phases. J Sep Sci 2021; 44:2577-2586. [PMID: 33909950 DOI: 10.1002/jssc.202100160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022]
Abstract
Adsorption mechanisms of caffeine, quercetin, and phenol as test substances in various chromatographic systems have been analyzed. The investigations were conducted using three different chromatographic columns packed with polar bonded stationary phases, that is, amide, amine, and zwitterionic. Methanol-water and acetonitrile-water systems with different organic solvent contents have been used as mobile phases. On the basis of adsorption isotherms obtained for the tested systems, Scatchard plots and adsorption energy distributions have been determined. The most likely retention mechanisms have been discussed. The results of investigations indicate that (i) the surfaces of tested adsorbents are energetically heterogeneous, and (ii) the main role in sorption mechanism is played by low-energy sites.
Collapse
Affiliation(s)
- Piotr Ziobrowski
- Department of Chemical and Process Engineering, Chemical Faculty, Rzeszów University of Technology, Rzeszów, Poland
| | - Marcin Chutkowski
- Department of Chemical and Process Engineering, Chemical Faculty, Rzeszów University of Technology, Rzeszów, Poland
| | - Mateusz Przywara
- Department of Chemical and Process Engineering, Chemical Faculty, Rzeszów University of Technology, Rzeszów, Poland
| | - Lidia Zapała
- Department of Inorganic and Analytical Chemistry, Chemical Faculty, Rzeszów University of Technology, Rzeszów, Poland
| | - Małgorzata Kosińska-Pezda
- Department of Inorganic and Analytical Chemistry, Chemical Faculty, Rzeszów University of Technology, Rzeszów, Poland
| | - Wojciech Zapała
- Department of Chemical and Process Engineering, Chemical Faculty, Rzeszów University of Technology, Rzeszów, Poland
| |
Collapse
|
18
|
Erkmen C, Gebrehiwot WH, Uslu B. Hydrophilic Interaction Liquid Chromatography (HILIC): Latest Applications in the Pharmaceutical Researches. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666200402101501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background:
Significant advances have been occurred in analytical research since the 1970s
by Liquid Chromatography (LC) as the separation method. Reverse Phase Liquid Chromatography
(RPLC) method, using hydrophobic stationary phases and polar mobile phases, is the most commonly
used chromatographic method. However, it is difficult to analyze some polar compounds with this
method. Another separation method is the Normal Phase Liquid Chromatography (NPLC), which involves
polar stationary phases with organic eluents. NPLC presents low-efficiency separations and
asymmetric chromatographic peak shapes when analyzing polar compounds. Hydrophilic Interaction
Liquid Chromatography (HILIC) is an interesting and promising alternative method for the analysis of
polar compounds. HILIC is defined as a separation method that combines stationary phases used in the
NPLC method and mobile phases used in the RPLC method. HILIC can be successfully applied to all
types of liquid chromatographic separations such as pharmaceutical compounds, small molecules, metabolites,
drugs of abuse, carbohydrates, toxins, oligosaccharides, peptides, amino acids and proteins.
Objective:
This paper provides a general overview of the recent application of HILIC in the pharmaceutical
research in the different sample matrices such as pharmaceutical dosage form, plasma, serum,
environmental samples, animal origin samples, plant origin samples, etc. Also, this review focuses on
the most recent and selected papers in the drug research from 2009 to the submission date in 2020,
dealing with the analysis of different components using HILIC.
Results and Conclusion:
The literature survey showed that HILIC applications are increasing every
year in pharmaceutical research. It was found that HILIC allows simultaneous analysis of many compounds
using different detectors.
Collapse
Affiliation(s)
- Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | | | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
19
|
Hakiem AFA, Hamdy AK, Ali HRH, Gomaa M, Aboraia AS. In depth investigation of the retention behavior of structurally related β-blockers on RP-HPLC column: Quality by design and quantitative structure-property relationship complementary approaches for optimization and validation. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1166:122549. [PMID: 33545562 DOI: 10.1016/j.jchromb.2021.122549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 11/26/2022]
Abstract
The persistent introduction of new β-blockers motivates the demand for optimizing RP-HPLC well-designed analytical procedures that could be applied to this structurally related and commonly prescribed pharmacological group in order to reduce time and chemicals consumption in quality control units. Betoxolol HCl (BEX) and Carvidolol (CAR) were selected as representative examples to conduct predictive studies based on two complementary approaches, Quality by design (QBD) and Quantitative structure property relationship (QSPR). In concern QBD, a Box-Behnken design was adopted at variable chromatographic parameters to achieve the most proper conditions that might be applied for efficient analysis of the majority of group members. On the other hand, the retention time was chosen as the target property in the QSPR study that was conducted onto seven β. blockers (the two investigated drugs in addition to five other β. blockers) to find the best correlated molecular descriptors to the retention behavior. Both external and internal validation studies have comparable quality with training levels. Hence a simple selection algorithm of conventional features provides robust confirmatory predictive QBD and QSPR models. Derringer's desirability function as as a multi-criteria approach was applied for getting the optimum chromatographic analysis conditions. Efficient analysis of BET and CAR was achieved at column temperatures of 26.00 and 27.50 °C, respectively using acetonitrile and phosphate buffer (pH 4.55) 70:30 v/v as a mobile phase with a flow rate of 1.00 mL/min, and UV detection at 220 nm. The method was validated in accordance to ICH guidelines, and had exhibited acceptable precision, accuracy, linearity, and robustness.
Collapse
Affiliation(s)
- Ahmed Faried Abdel Hakiem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Ahmed K Hamdy
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hassan Refat Hassan Ali
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mohamed Gomaa
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Ahmed Safwat Aboraia
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
20
|
Tang T, Guo D, Huang S. Preparation and chromatographic evaluation of the hydrophilic interaction chromatography stationary phase based on nucleosides or nucleotides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:419-425. [PMID: 33427266 DOI: 10.1039/d0ay02016h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a series of novel hydrophilic interaction chromatography (HILIC) stationary phases were prepared by grafting nucleosides or nucleotides on the surface of silica gel. Firstly, the silica was modified with 3-glycidoxypropyltrimethoxysilane (GPTMS). And then nucleosides or nucleotides were bonded on the surface of GPTMS-modified silica through the epoxy-amine ring-opening reaction to provide four HILIC materials. These obtained stationary phases were successfully characterized by Fourier transform-infrared spectroscopy (FT-IR) and elemental analysis (EA), respectively. Effects of column temperature, water content of the mobile phase, pH and buffer concentration on the retention behavior of these HILIC materials and the corresponding separation mechanism were evaluated using various nucleosides and nucleobases, respectively. In addition, polar and hydrophilic compounds such as amino acids and water-soluble vitamins were successfully separated using the corresponding columns, showing application potential for the separation of bioactive substances.
Collapse
Affiliation(s)
- Tingfeng Tang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.
| | | | | |
Collapse
|
21
|
Free Amino Acid Analysis in Honey Samples by Hydrophilic Interaction Liquid Chromatography with UV Detection Using Precolumn Derivatization with Dansyl Chloride. Chromatographia 2021. [DOI: 10.1007/s10337-020-03991-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Terán JE, Millbern Z, Shao D, Sui X, Liu Y, Demmler M, Vinueza NR. Characterization of synthetic dyes for environmental and forensic assessments: A chromatography and mass spectrometry approach. J Sep Sci 2020; 44:387-402. [PMID: 33047882 DOI: 10.1002/jssc.202000836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/07/2022]
Abstract
Dyes have become common substances since they are employed in mostly all objects surrounding our daily activities such as clothing and upholstery. Based on the usage and disposal of these objects, the transfer of the dyes to other media such as soil and water increases their prevalence in our environment. However, this prevalence could help to solve crimes and pollution problems if detection techniques are proper. For that reason, the detection and characterization of dyes in complex matrices is important to determine the possible events leading to their deposition (natural degradation, attempts of removal, possible match with evidence, among others). Currently, there are several chromatographic and mass spectrometric approaches used for the identification of these organic molecules and their derivatives with high specificity and accuracy. This review presents current chromatographic and mass spectrometric methods that are used for the detection and characterization of disperse, acid, basic, and reactive dyes, and their derivatives.
Collapse
Affiliation(s)
- Julio E Terán
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Zoe Millbern
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Dongyan Shao
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Xinyi Sui
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Yixin Liu
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Morgan Demmler
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Nelson R Vinueza
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
23
|
Jeong SH, Jang JH, Cho HY, Lee YB. Simultaneous determination of three iridoid glycosides of Rehmannia glutinosa in rat biological samples using a validated hydrophilic interaction-UHPLC-MS/MS method in pharmacokinetic and in vitro studies. J Sep Sci 2020; 43:4148-4161. [PMID: 32914932 DOI: 10.1002/jssc.202000809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
The purpose of this study was to develop a method for simultaneous analysis of aucubin, catalpol, and geniposide, which are representative iridoid glycoside constituents of Rehmannia glutinosa, in rat plasma, urine, and feces using hydrophilic interaction ultra high-performance liquid chromatography with tandem mass spectrometry. The three components were separated using 10 mmol/L aqueous ammonium formate containing 0.01% (v/v) formic acid and acetonitrile as a mobile phase by gradient elution at a flow rate of 0.2 mL/min, equipped with a Kinetex® HILIC column (50 × 2.1 mm, 2.6 μm). Quantitation of this analysis was performed on a triple quadrupole mass spectrometer employing electrospray ionization and operated in multiple reaction monitoring mode. The chromatograms showed high resolution, sensitivity, and selectivity with no interference with plasma constituents. In all three iridoid glycosides, both the intra- and interbatch precisions (coefficient of variation %) were less than 4.81%. The accuracy was 96.56-103.55% for aucubin, 95.23-106.21% for catalpol, and 94.50-104.16% for geniposide. The developed analytical method satisfied the criteria of international guidance and was successfully applied to pharmacokinetic studies including oral bioavailability of aucubin, catalpol, and geniposide, and their urinary and fecal excretion ratios after oral or intravenous administration to rats. The new method was also applied to measure plasma protein binding ratios in vitro.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, Gyeonggi-do, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
24
|
Zhou D, Luo Q, Zeng Q, Zheng Y, Ren X, Gao D, Fu Q, Zhang K, Xia Z, Wang L. Preparation of an aminophenylboronic acid and N-isopropyl acrylamide copolymer functionalized stationary phase for mixed-mode chromatography. J Chromatogr A 2020; 1627:461423. [DOI: 10.1016/j.chroma.2020.461423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/25/2020] [Accepted: 07/19/2020] [Indexed: 12/15/2022]
|
25
|
May MC, Pavone DC, Lurie IS. The separation and identification of synthetic cathinones by portable low microflow liquid chromatography with dual capillary columns in series and dual wavelength ultraviolet detection. J Sep Sci 2020; 43:3756-3764. [PMID: 32743973 DOI: 10.1002/jssc.202000767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022]
Abstract
This study ascertained the viability of a portable liquid chromatograph, operating at low microliter per minute flow, for the analysis of seized drugs at remote sites as well as in laboratory settings. Synthetic cathinones were screened using dual capillary columns in series, C8 and biphenyl, with on-column ultraviolet detection at 255 and 275 nm. The relative retention times of the two columns in series and their peak area absorbance ratio were used to determine if the 16 synthetic cathinones investigated could be uniquely identified in these conditions. Based on these parameters all of the analytes could be distinguished. Representative mixtures of synthetic cathinones were used to determine the repeatability, linearity, and limits of detection of the method. This cost effective and green instrumentation has the potential to satisfy minimum international guidelines for the analysis of seized drugs.
Collapse
Affiliation(s)
- Marisa C May
- Department of Forensic Science, The George Washington University, Washington, DC, USA
| | - David C Pavone
- Department of Forensic Science, The George Washington University, Washington, DC, USA
| | - Ira S Lurie
- Department of Forensic Science, The George Washington University, Washington, DC, USA
| |
Collapse
|
26
|
Long F, Zhang M, Yuan J, Du J, Ma A, Pan J. A simple, versatile, and automated pulse-diffusion-focusing strategy for sensitive milliliter-level-injection HILIC-MS/MS analysis of hydrophilic toxins. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122318. [PMID: 32092652 DOI: 10.1016/j.jhazmat.2020.122318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 01/16/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
The measurement of trace hydrophilic toxins in complex aqueous-rich matrices is a daunting challenge. To address this analytical bottleneck, pulse diffusion focusing (PDF), a novel sample injection technique for hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS), was developed. Theoretical and experimental investigations of the mechanism and key parameters revealed that the pulse-injection approach, assisted by solvent diffusion, efficiently solved the volume overload problem. This milliliter-level-injection HILIC-MS/MS technique was reported for the first time herein, and provided a significant enhancement in sensitivity compared to the conventional injection method, in addition to being an efficient approach to address the solvent incompatibility of off-line sample preparation and HILIC. The automated PDF-HILIC-MS/MS system was obtained by slightly modifying a commercial LC-MS/MS instrument in an easy and economical manner. The efficiency of the system was demonstrated through the detection of trace tetrodotoxin contents in plasma and urine samples. Low limits of detection (i.e., 0.65 and 2.2 ng·mL-1) were obtained using the simplified sample preparation method. The recoveries were in the range 91-113.3 % with intra-day and inter-day precisions of ≤9.6 %. Further experimental results proved the method to be versatile for various hydrophilic toxins.
Collapse
Affiliation(s)
- Fei Long
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Mei Zhang
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Jiahao Yuan
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Juan Du
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Ande Ma
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.
| | - Jialiang Pan
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Bhutani P, U R, H N S, Ranjanna PK, Paul AT. Rapid and cost-effective LC-MS/MS method for determination of hydroxycitric acid in plasma: Application in the determination of pharmacokinetics in commercial Garcinia preparations. Biomed Chromatogr 2020; 34:e4902. [PMID: 32428251 DOI: 10.1002/bmc.4902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/05/2022]
Abstract
Garcinia cambogia is one of the most commonly used anti-obesity dietary supplements, and hydroxycitric acid (HCA) is a major constituent in the commercial preparations of Garcinia. High doses of HCA are often consumed without much awareness of its pharmacokinetic and toxicokinetic parameters, and therefore, a complete understanding of its effects is lacking. The first step in understanding these parameters is the availability of a reliable bioanalytical method. Here, we present the first report on a UPLC-MS/MS method for analysis of HCA in rat plasma after a simplified and cost-effective protein precipitation. Chromatographic separation of the analytes in the supernatant was achieved using hydrophilic interaction liquid chromatography, where mass parameters were optimized and a rapid 5-min quantitative assay was developed. The method was highly sensitive, accurate, precise and linear in the concentration range of 10.5-5000 ng/mL (validated according to the United States Food and Drug Administration guidelines). Further, the method was successfully used to describe the pharmacokinetic profile of HCA in rat plasma after the administration of pure HCA and commercial Garcinia preparations.
Collapse
Affiliation(s)
- Priyadeep Bhutani
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani, India.,Pharmaceutical Candidate Optimization, Biocon Bristol Myers Squibb R&D Centre, Syngene International Limited, Bangalore, India
| | - Rekha U
- Department of Pharmaceutics, KLE College of Pharmacy, Bangalore, India
| | - Shivakumar H N
- Department of Pharmaceutics, KLE College of Pharmacy, Bangalore, India
| | - Prabhakar K Ranjanna
- Pharmaceutical Candidate Optimization, Biocon Bristol Myers Squibb R&D Centre, Syngene International Limited, Bangalore, India
| | - Atish T Paul
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani, India
| |
Collapse
|
28
|
Colombo M, Ferretti R, Zanitti L, Cirilli R. Direct separation of the enantiomers of ramosetron on a chlorinated cellulose‐based chiral stationary phase in hydrophilic interaction liquid chromatography mode. J Sep Sci 2020; 43:2589-2593. [DOI: 10.1002/jssc.202000290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Rosella Ferretti
- Centro nazionale per il controllo e la valutazione dei farmaciIstituto Superiore di Sanità Rome Italy
| | - Leo Zanitti
- Centro nazionale per il controllo e la valutazione dei farmaciIstituto Superiore di Sanità Rome Italy
| | - Roberto Cirilli
- Centro nazionale per il controllo e la valutazione dei farmaciIstituto Superiore di Sanità Rome Italy
| |
Collapse
|
29
|
Managing the column equilibration time in hydrophilic interaction chromatography. J Chromatogr A 2020; 1612:460655. [DOI: 10.1016/j.chroma.2019.460655] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 11/23/2022]
|
30
|
Seidl C, Bell DS, Stoll DR. A study of the re-equilibration of hydrophilic interaction columns with a focus on viability for use in two-dimensional liquid chromatography. J Chromatogr A 2019; 1604:460484. [DOI: 10.1016/j.chroma.2019.460484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
31
|
Regalado EL, Haidar Ahmad IA, Bennett R, D’Atri V, Makarov AA, Humphrey GR, Mangion I, Guillarme D. The Emergence of Universal Chromatographic Methods in the Research and Development of New Drug Substances. Acc Chem Res 2019; 52:1990-2002. [PMID: 31198042 DOI: 10.1021/acs.accounts.9b00068] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Manufacturing process development of new drug substances in the pharmaceutical industry combines numerous chemical challenges beyond the efficient synthesis of complex molecules. Optimization of a synthetic route involves the screening of multiple reaction variables with a desired outcome that not only depends on an increased product yield but is also highly influenced by the removal efficacy of residual chemicals and reaction byproducts during the subsequent synthetic route. Consequently, organic chemists must survey a wide array of synthetic variables to develop a highly productive, green, and cost-effective manufacturing process. The time constraints of developing robust quantitative methods prior to each processing step can easily lead to sample analysis becoming a bottleneck in synthetic route development. In this regard, conventional "on demand" analytical method development and optimization approaches, traditionally used for guiding synthetic chemistry efforts, become unsustainable. This Account introduces recent efforts to address the aforementioned challenges through the development and implementation of generic or more universal chromatographic methods that can cover a broad spectrum of targeted compound classes. Such generic methods require significant resolving power to enable baseline resolution of multicomponent mixtures in a single experimental run without additional method customization but must be simple enough to allow for routine use by chemists, chemical engineers and other researchers with little experience in chromatographic method development. These powerful analytical methodologies are often employed to minimize the time spent developing new analytical assays, while also facilitating method transfer to manufacturing facilities and application in regulatory settings. Diverse examples of universal and fit-for-purpose analytical procedures are presented herein, illustrating the power of modern readily available analytical technology for streamlining the development of new drug substances in organic chemistry laboratories across both academic and industrial sectors. With recent advances in analytical instrumentation and column technologies, universal chromatographic methods are quickly becoming a proactive and effective strategy to accelerate the discovery and implementation of new synthetic methodologies, especially but not limited to laboratories where the synthetic process route is undergoing rapid change and optimization. Targets of these generic methods include analysis of organic solvents, acid and basic additives, nucleotide species, palladium scavengers, impurity mapping, enantiopurity, synthetic intermediates, active pharmaceutical ingredients and their counterions, dehalogenation byproducts, and mixtures of organohalogenated pharmaceuticals, among other chemicals used or formed in process chemistry reactions.
Collapse
Affiliation(s)
- Erik L. Regalado
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Imad A. Haidar Ahmad
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Raffeal Bennett
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Alexey A. Makarov
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Guy R. Humphrey
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ian Mangion
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
32
|
Kartsova LA, Bessonova EA, Somova VD. Hydrophilic Interaction Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819050058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Mallik AK, Guragain S, Rahman MM, Takafuji M, Ihara H. L-Lysine-derived highly selective stationary phases for hydrophilic interaction chromatography: Effect of chain length on selectivity, efficiency, resolution, and asymmetry. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201800148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Abul K. Mallik
- Department of Applied Chemistry and Chemical Engineering; Faculty of Engineering and Technology; University of Dhaka; Dhaka Bangladesh
| | - Sudhina Guragain
- Department of Applied Chemistry and Biochemistry; Faculty of Engineering; Kumamoto University; Japan (currently at Department of Earth and Planetary Science; Harvard University; Cambridge Massachusetts USA
| | - Mohammed Mizanur Rahman
- Department of Applied Chemistry and Chemical Engineering; Faculty of Engineering and Technology; University of Dhaka; Dhaka Bangladesh
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry; Faculty of Engineering; Kumamoto University; Japan (currently at Department of Earth and Planetary Science; Harvard University; Cambridge Massachusetts USA
- Kumamoto Institute for Photo-Electro Organics (Phoenics); Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry; Faculty of Engineering; Kumamoto University; Japan (currently at Department of Earth and Planetary Science; Harvard University; Cambridge Massachusetts USA
- Kumamoto Institute for Photo-Electro Organics (Phoenics); Japan
| |
Collapse
|
34
|
Hu Y, Cai T, Zhang H, Chen J, Li Z, Qiu H. Poly(itaconic acid)-grafted silica stationary phase prepared in deep eutectic solvents and its unique performance in hydrophilic interaction chromatography. Talanta 2019; 191:265-271. [DOI: 10.1016/j.talanta.2018.08.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/28/2023]
|
35
|
Cirilli R. HPLC Enantioseparations with Polysaccharide-Based Chiral Stationary Phases in HILIC Conditions. Methods Mol Biol 2019; 1985:127-146. [PMID: 31069732 DOI: 10.1007/978-1-4939-9438-0_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In contrast to achiral hydrophilic interaction liquid chromatography (HILIC), which is a popular and largely applied technique to analyze polar compounds such as pharmaceuticals, metabolites, proteins, peptides, amino acids, oligonucleotides, and carbohydrates, the introduction of the HILIC concept in enantioselective chromatography has been relatively recent and scarcely debated. In this chapter, the HILIC enantioseparations carried out on polysaccharide-based chiral stationary phases are grouped and discussed. Another objective of this chapter is to provide a comprehensive overview and insight into the experimental conditions needed to operate under HILIC mode. Finally, to stimulate and facilitate the application of this chromatographic technique, a detailed experimental protocol of a chiral resolution on a chlorinated cellulose-based chiral stationary phase under HILIC conditions is described.
Collapse
Affiliation(s)
- Roberto Cirilli
- National Institute of Health, Centre for the Control and Evaluation of Medicines, Rome, Italy.
| |
Collapse
|
36
|
Retention characteristics of some antibiotic and anti-retroviral compounds in hydrophilic interaction chromatography using isocratic elution, and gradient elution with repeatable partial equilibration. Anal Chim Acta 2019; 1045:141-151. [DOI: 10.1016/j.aca.2018.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 11/22/2022]
|
37
|
Cerqueira MBR, Soares KL, Caldas SS, Primel EG. Sample as solid support in MSPD: A new possibility for determination of pharmaceuticals, personal care and degradation products in sewage sludge. CHEMOSPHERE 2018; 211:875-883. [PMID: 30103143 DOI: 10.1016/j.chemosphere.2018.07.165] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
A method based on matrix-solid phase dispersion (MSPD), focused on the principles of green analytical chemistry, aimed at the use of alternative solid supports and less toxic solvents, was developed for the simultaneous determination of 19 pharmaceuticals, 4 personal care products (PPCPs) and 4 degradation products in sewage sludge samples. Higher recoveries were achieved when 2 g sample was macerated for 5 min in a glass mortar, transferred to a centrifuge tube, and 1 min vortex agitation with 5 mL methanol. The performance of the method was evaluated through linearity, recovery, precision (intra-day), method detection and quantification limits (MDL and MQL) and matrix effect. The calibration curves prepared in methanol and in the matrix extract showed a correlation coefficient ranging from 0.98 to 0.99. MQL values ranged from 1.25 to 1250 ng g-1. Recoveries between 50 and 120% were reached with RSDs lower than 20% for most compounds. The method presented low and medium matrix effects for most analytes. This method was successfully applied to real samples and of the 27 compounds determined, amitriptyline, carbamazepine, diclofenac, haloperidol, ketoconazole, miconazole, albendazole, mebendazole, thiabendazole, triclosan and triclocarban were detected in concentrations between 2.5 and 5400 ng g-1.
Collapse
Affiliation(s)
- Maristela B R Cerqueira
- Post-graduation Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande-FURG, Av Itália, Km 8, s/n, Rio Grande, Rio Grande, do Sul State, 96201-900, Brazil
| | - Karina L Soares
- Post-graduation Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande-FURG, Av Itália, Km 8, s/n, Rio Grande, Rio Grande, do Sul State, 96201-900, Brazil
| | - Sergiane S Caldas
- Post-graduation Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande-FURG, Av Itália, Km 8, s/n, Rio Grande, Rio Grande, do Sul State, 96201-900, Brazil
| | - Ednei G Primel
- Post-graduation Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande-FURG, Av Itália, Km 8, s/n, Rio Grande, Rio Grande, do Sul State, 96201-900, Brazil.
| |
Collapse
|
38
|
SUMIYA O, TAZAWA T, NAKAGAMI K, SHIRAI Y, MORIUCHI K, UETA I, SAITO Y. Spherical Polyimide Particles as a Novel Stationary Phase in Liquid Chromatography. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ohjiro SUMIYA
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Toshiaki TAZAWA
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Koki NAKAGAMI
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | | | | | - Ikuo UETA
- Department of Applied Chemistry, University of Yamanashi
| | - Yoshihiro SAITO
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| |
Collapse
|
39
|
Pazourek J. Determination of glucosamine and monitoring of its mutarotation by hydrophilic interaction liquid chromatography with evaporative light scattering detector. Biomed Chromatogr 2018; 32:e4368. [PMID: 30120782 DOI: 10.1002/bmc.4368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 01/19/2023]
Abstract
Saccharides and their derivatives are typical polar analytes without a suitable UV-chromophore that are nowadays analyzed by HPLC (high-performance liquid chromatography) under HILIC (hydrophilic interaction liquid chromatography) mode. Usually an evaporative light scattering detector (ELSD) is utilized which, however, gives a nonlinear response. A procedure to overcome the problem of mutarotating (time-varying) analytes recorded with such a nonlinear response detector is described. The procedure was applied for determination of glucosamine in two commercially available pharmaceutical formulations containing the common inorganic ions that the detector gives a response to. Under optimized conditions, both the anomers of glucosamine were separated and could be determined separately. Owing to the short retention time of the analyte (a run time <4 min) and relatively slow kinetics of the anomeric conversion (equilibration time 2.5 h), mutarotation could be monitored and corresponding rate constants calculated.
Collapse
Affiliation(s)
- Jiří Pazourek
- Department of Chemical Drugs, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
40
|
Buszewska-Forajta M, Markuszewski MJ, Kaliszan R. Free silanols and ionic liquids as their suppressors in liquid chromatography. J Chromatogr A 2018; 1559:17-43. [DOI: 10.1016/j.chroma.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 12/21/2022]
|
41
|
Alharthi S, El Rassi Z. Poly(2-carboxyethyl acrylate- co-ethylene glycol dimethacrylate) monolithic precursor. Part II. Carbodiimide assisted post-polymerization modification with tris and d-Glucamine for use in hydrophilic interaction capillary liquid chromatography. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1511802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sarah Alharthi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
42
|
Calcaterra A, Iovine V, Botta B, Quaglio D, D'Acquarica I, Ciogli A, Iazzetti A, Alfonsi R, Lospinoso Severini L, Infante P, Di Marcotullio L, Mori M, Ghirga F. Chemical, computational and functional insights into the chemical stability of the Hedgehog pathway inhibitor GANT61. J Enzyme Inhib Med Chem 2018; 33:349-358. [PMID: 29338454 PMCID: PMC6009951 DOI: 10.1080/14756366.2017.1419221] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This work aims at elucidating the mechanism and kinetics of hydrolysis of GANT61, the first and most-widely used inhibitor of the Hedgehog (Hh) signalling pathway that targets Glioma-associated oncogene homologue (Gli) proteins, and at confirming the chemical nature of its bioactive form. GANT61 is poorly stable under physiological conditions and rapidly hydrolyses into an aldehyde species (GANT61-A), which is devoid of the biological activity against Hh signalling, and a diamine derivative (GANT61-D), which has shown inhibition of Gli-mediated transcription. Here, we combined chemical synthesis, NMR spectroscopy, analytical studies, molecular modelling and functional cell assays to characterise the GANT61 hydrolysis pathway. Our results show that GANT61-D is the bioactive form of GANT61 in NIH3T3 Shh-Light II cells and SuFu−/− mouse embryonic fibroblasts, and clarify the structural requirements for GANT61-D binding to Gli1. This study paves the way to the design of GANT61 derivatives with improved potency and chemical stability.
Collapse
Affiliation(s)
- Andrea Calcaterra
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Valentina Iovine
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Bruno Botta
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Deborah Quaglio
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Ilaria D'Acquarica
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Alessia Ciogli
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Antonia Iazzetti
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Romina Alfonsi
- b Department of Molecular Medicine , Sapienza University of Rome , Rome , Italy
| | | | - Paola Infante
- c Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Rome , Italy
| | - Lucia Di Marcotullio
- b Department of Molecular Medicine , Sapienza University of Rome , Rome , Italy.,d Pasteur Institute/Cenci Bolognetti Foundation , Sapienza University of Rome , Rome , Italy
| | - Mattia Mori
- c Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Rome , Italy
| | - Francesca Ghirga
- c Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Rome , Italy
| |
Collapse
|
43
|
Zhang L, Wu L, Wang C, Zhang G, Yu L, Li H, Maharjan A, Tang Y, He D, York P, Sun H, Yin X, Zhang J, Sun L. Synchrotron Radiation Microcomputed Tomography Guided Chromatographic Analysis for Displaying the Material Distribution in Tablets. Anal Chem 2018; 90:3238-3244. [DOI: 10.1021/acs.analchem.7b04726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liu Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Wu
- Key Laboratory
of Molecular Pharmacology and Drug Evaluation, School of Pharmacy,
Ministry of Education, Yantai University, Yantai 264005, China
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caifen Wang
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guoqing Zhang
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haiyan Li
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Abi Maharjan
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Tang
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dunwei He
- Shandong Hi-Qual Pharmatech Company, Limited, Zibo 255035, China
| | - Peter York
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Institute
of Pharmaceutical
Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Huimin Sun
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xianzhen Yin
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiwen Zhang
- Key Laboratory
of Molecular Pharmacology and Drug Evaluation, School of Pharmacy,
Ministry of Education, Yantai University, Yantai 264005, China
- Center for Drug
Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lixin Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
44
|
Lemasson E, Bertin S, Hennig P, Lesellier E, West C. Impurity profiling of drug candidates: Analytical strategies using reversed-phase and mixed-mode high-performance liquid chromatography methods. J Chromatogr A 2018; 1535:101-113. [PMID: 29329884 DOI: 10.1016/j.chroma.2018.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
The development of new active pharmaceutical ingredients (API) requires accurate impurity profiling. Nowadays, reversed-phase HPLC (RPLC) on C18 stationary phase is the method of first choice for this task and usually employed in generic screening methods. However, this method sometimes fails, especially when the target analyte is not sufficiently retained, making impurity analysis difficult or even impossible. In such cases, a second method must be available. In the present paper, we compare the merits of RPLC on C18 phase to those of previously optimized alternative methods, based on the analysis of a large and diverse set of small-molecule drug candidates. Various strategies are considered: RPLC on C18 phase but with different mobile phase composition (acidic or basic), RPLC with a pentafluorophenyl stationary phase, or mixed-mode HPLC with both bimodal and trimodal stationary phases. First, method performances were compared in terms of response rate (proportion of compounds eluted) and peak shapes for a large set of synthetic drugs (140) with structural diversity and their orthogonality was evaluated. Then a subset of compounds (25) containing varied impurity profiles was used to compare the methods based on the capability to detect impurities and evaluate the relative purity of the API.
Collapse
Affiliation(s)
- Elise Lemasson
- Univ Orléans, Institut de Chimie Organique et Analytique (ICOA), CNRS UMR 7311, Pôle de Chimie, rue de Chartres, B.P. 6759, 45067 Orléans, Cedex 2, France
| | - Sophie Bertin
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France
| | - Philippe Hennig
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France
| | - Eric Lesellier
- Univ Orléans, Institut de Chimie Organique et Analytique (ICOA), CNRS UMR 7311, Pôle de Chimie, rue de Chartres, B.P. 6759, 45067 Orléans, Cedex 2, France
| | - Caroline West
- Univ Orléans, Institut de Chimie Organique et Analytique (ICOA), CNRS UMR 7311, Pôle de Chimie, rue de Chartres, B.P. 6759, 45067 Orléans, Cedex 2, France.
| |
Collapse
|
45
|
1H-Tetrazole-5-amine Immobilized on Substituted Polymer Gel/Silica as a New Stationary Phase for Hydrophilic Interaction Chromatography. Chromatographia 2017. [DOI: 10.1007/s10337-017-3452-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Determination of olopatadine in human tears by hydrophilic interaction liquid chromatography–MS/MS method. Bioanalysis 2017; 9:1943-1954. [DOI: 10.4155/bio-2017-0172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The objective of the study was development of hydrophilic interaction liquid chromatography–ESI/MS/MS method for the determination of olopatadine in tear matrix. Materials & methods: Separation was performed on Acquity BEH amide column (2.1 × 100 mm, 1.7 μm). The mobile phase was consisted of 0.1% formic acid in water and acetonitrile. Mianserin hydrochloride was implemented as an internal standard. The artificial tear fluid was used as matrix. The tear samples were collected using Schirmer test strips. For the optimization of ultra pressure liquid chromatography conditions, Box–Benhken design was utilized. Results: The optimal values of the ion source and collision cell parameters were found. Quantification was performed in multiple reaction monitoring mode. The optimized method was fully validated. Conclusion: The proposed method was utilized for monitoring of olopatadine in human tear.
Collapse
|
47
|
Jandera P, Hájek T. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review. J Sep Sci 2017; 41:145-162. [DOI: 10.1002/jssc.201701010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Pavel Jandera
- Department of Analytical Chemistry; Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Tomáš Hájek
- Department of Analytical Chemistry; Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|
48
|
Taraji M, Haddad PR, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA. Chemometric-assisted method development in hydrophilic interaction liquid chromatography: A review. Anal Chim Acta 2017; 1000:20-40. [PMID: 29289311 DOI: 10.1016/j.aca.2017.09.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 02/09/2023]
Abstract
With an enormous growth in the application of hydrophilic interaction liquid chromatography (HILIC), there has also been significant progress in HILIC method development. HILIC is a chromatographic method that utilises hydro-organic mobile phases with a high organic content, and a hydrophilic stationary phase. It has been applied predominantly in the determination of small polar compounds. Theoretical studies in computer-aided modelling tools, most importantly the predictive, quantitative structure retention relationship (QSRR) modelling methods, have attracted the attention of researchers and these approaches greatly assist the method development process. This review focuses on the application of computer-aided modelling tools in understanding the retention mechanism, the classification of HILIC stationary phases, prediction of retention times in HILIC systems, optimisation of chromatographic conditions, and description of the interaction effects of the chromatographic factors in HILIC separations. Additionally, what has been achieved in the potential application of QSRR methodology in combination with experimental design philosophy in the optimisation of chromatographic separation conditions in the HILIC method development process is communicated. Developing robust predictive QSRR models will undoubtedly facilitate more application of this chromatographic mode in a broader variety of research areas, significantly minimising cost and time of the experimental work.
Collapse
Affiliation(s)
- Maryam Taraji
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Paul R Haddad
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia.
| | - Ruth I J Amos
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Mohammad Talebi
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Roman Szucs
- Pfizer Global Research and Development, CT13 9NJ, Sandwich, UK
| | - John W Dolan
- LC Resources, 1795 NW Wallace Rd., McMinnville, OR 97128, USA
| | | |
Collapse
|
49
|
Chen Y, Shu Y, Yang Z, Lv X, Tan W, Chen Y, Ma M, Chen B. The preparation of a poly (pentaerythritol tetraglycidyl ether-co-poly ethylene imine) organic monolithic capillary column and its application in hydrophilic interaction chromatography for polar molecules. Anal Chim Acta 2017; 988:104-113. [DOI: 10.1016/j.aca.2017.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
|
50
|
Dinç S, Olmez SS, Tuncel A. Comparison of newly developed hydroxyl-functionalized monodisperse HILIC columns new HILIC column. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1343731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Saliha Dinç
- Selcuk University Çumra School of Applied Sciences, Konya, Turkey
- Selcuk University Advanced Technology Research and Application Center, Konya, Turkey
| | | | - Ali Tuncel
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|