1
|
Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation. SEPARATIONS 2022. [DOI: 10.3390/separations9110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metal-Chelating Peptides (MCPs), obtained from protein hydrolysates, present various applications in the field of nutrition, pharmacy, cosmetic etc. The separation of MCPs from hydrolysates mixture is challenging, yet, techniques based on peptide-metal ion interactions such as Immobilized Metal Ion Affinity Chromatography (IMAC) seem to be efficient. However, separation processes are time consuming and expensive, therefore separation prediction using chromatography modelling and simulation should be necessary. Meanwhile, the obtention of sorption isotherm for chromatography modelling is a crucial step. Thus, Surface Plasmon Resonance (SPR), a biosensor method efficient to screen MCPs in hydrolysates and with similarities to IMAC might be a good option to acquire sorption isotherm. This review highlights IMAC experimental methodology to separate MCPs and how, IMAC chromatography can be modelled using transport dispersive model and input data obtained from SPR for peptides separation simulation.
Collapse
|
2
|
Gómez-Guerrero N, González-López N, Zapata-Velásquez JD, Martínez-Ramírez JA, Rivera-Monroy ZJ, García-Castañeda JE. Synthetic Peptides in Doping Control: A Powerful Tool for an Analytical Challenge. ACS OMEGA 2022; 7:38193-38206. [PMID: 36340120 PMCID: PMC9631397 DOI: 10.1021/acsomega.2c05296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Peptides are very diverse molecules that can participate in a wide variety of biological processes. In this way, peptides are attractive for doping, since these molecules can activate or trigger biological processes that can improve the sports performance of athletes. Peptide molecules are found in the official World Anti-Doping Agency lists, mainly in sections S2, S4, and S5. In most cases, these molecules have a very short half-life in the body and/or are identical to natural molecules in the body, making it difficult to analyze them as performance-enhancing drugs. This article reviews the role of peptides in doping, with special emphasis on the peptides used as reference materials, the pretreatment of samples in biological matrices, the instrumentation, and the validation of analytical methodologies for the analysis of peptides used in doping. The growing need to characterize and quantify these molecules, especially in complex biological matrices, has generated the need to search for robust strategies that allow for obtaining sensitive and conclusive results. In this sense, strategies such as solid phase peptide synthesis (SPPS), seeking to obtain specific peptides, metabolites, or isotopically labeled analogs, is a key tool for adequate quantification of different peptide molecules in biological matrices. This, together with the use of optimal methodologies for sample pretreatment (e.g., SPE or protein precipitation), and for subsequent analysis by high-resolution techniques (mainly hyphenated LC-HRMS techniques), have become the preferred instrumentation to meet the analytical challenge involved in the analysis of peptides in complex matrices.
Collapse
Affiliation(s)
- Néstor
Alejandro Gómez-Guerrero
- Chemistry
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 451, 11321 Bogotá, Colombia
- Doping
Control Laboratory, Ministerio del Deporte,
Bogotá, Carrera
68 No 55-65, 111071 Bogotá, Colombia
| | - Nicolás
Mateo González-López
- Pharmacy
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 450, 11321 Bogotá, Colombia
| | - Juan Diego Zapata-Velásquez
- Pharmacy
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 450, 11321 Bogotá, Colombia
| | - Jorge Ariel Martínez-Ramírez
- Pharmacy
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 450, 11321 Bogotá, Colombia
| | - Zuly Jenny Rivera-Monroy
- Chemistry
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 451, 11321 Bogotá, Colombia
| | | |
Collapse
|
3
|
Judák P, Esposito S, Coppieters G, Van Eenoo P, Deventer K. Doping control analysis of small peptides: A decade of progress. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122551. [PMID: 33848801 DOI: 10.1016/j.jchromb.2021.122551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Small peptides are handled in the field of sports drug testing analysis as a separate group doping substances. It is a diverse group, which includes but is not limited to growth hormone releasing-factors and gonadotropin-releasing hormone analogues. Significant progress has been achieved during the past decade in the doping control analysis of these peptides. In this article, achievements in the application of liquid chromatography-mass spectrometry-based methodologies are reviewed. To meet the augmenting demands for analyzing an increasing number of samples for the presence of an increasing number of prohibited small peptides, testing methods have been drastically simplified, whilst their performance level remained constant. High-resolution mass spectrometers have been installed in routine laboratories and became the preferred detection technique. The discovery and implementation of metabolites/catabolites in testing methods led to extended detection windows of some peptides, thus, contributed to more efficient testing in the anti-doping community.
Collapse
Affiliation(s)
- Péter Judák
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium.
| | - Simone Esposito
- ADME/DMPK Department, Drug Discovery Division, IRBM S.p.A, Pomezia, Rome, Italy
| | - Gilles Coppieters
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium
| | - Peter Van Eenoo
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium
| | - Koen Deventer
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium
| |
Collapse
|
4
|
Xu M, Qiao Z, Huang G, Long M, Yang T, Zhang X, Shao M, Xu Z, Rao Z. Optimization of l-arginine purification from Corynebacterium crenatum fermentation broth. J Sep Sci 2020; 43:2936-2948. [PMID: 32386338 DOI: 10.1002/jssc.202000067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/14/2020] [Accepted: 04/22/2020] [Indexed: 11/12/2022]
Abstract
l-Arginine has many special physiological and biochemical functions, with wide applications in the food and pharmaceutical industry. Few studies on the purification of l-arginine from fermentation broth have been conducted; however, none of them were systematic enough for industrial scale-up. Therefore, it is necessary to develop a highly efficient and systematic process for the purification of l-arginine from fermentation broth. In this study, we screened out a cation exchange resin, D155, having high exchange capacity, high selectivity, and easy elution capacity, and analyzed its adsorption isotherm, thermodynamics, and kinetics using different models. Further, the process parameters of fixed-bed ion exchange adsorption and elution were optimized, and the penetration curve during the operation was modeled. Based on the fixed-bed ion-exchange parameters, a 30-column continuous ion-exchange system was designed, and the flow velocity in each zone was optimized. Finally, to obtain a high purity of l-arginine, the purification tests were conducted using anion exchange resin 711, and an l-arginine yield of 99.1% and purity of 98.5% was obtained. This effective and economical method also provides a promising strategy for separation of other amino acids from the fermentation broth, which is of great significance to the l-arginine fermentation industry.
Collapse
Affiliation(s)
- Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China.,Jiangnan University (Rugao) Food Biotechnology Research Institute, Jiangsu, P. R. China
| | - Zhina Qiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Genshu Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China.,Jiangnan University (Rugao) Food Biotechnology Research Institute, Jiangsu, P. R. China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| |
Collapse
|
5
|
Le Maux S, Nongonierma AB, FitzGerald RJ. Improved short peptide identification using HILIC–MS/MS: Retention time prediction model based on the impact of amino acid position in the peptide sequence. Food Chem 2015; 173:847-54. [DOI: 10.1016/j.foodchem.2014.10.104] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/04/2014] [Accepted: 10/18/2014] [Indexed: 01/10/2023]
|
6
|
Mitulović G. New HPLC Techniques for Proteomics Analysis: A Short Overview of Latest Developments. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2014.941266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Goran Mitulović
- a Clinical Institute of Laboratory Medicine and Proteomics Core Facility , Medical University of Vienna , Wien , Austria
| |
Collapse
|
7
|
Comparison of retention behavior of oligolysine and oligoarginine in ion-pairing chromatography using heptafluorobutyric acid. Anal Bioanal Chem 2013; 405:9739-46. [DOI: 10.1007/s00216-013-7397-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/01/2022]
|
8
|
Reversed phase ion-pairing chromatography of an oligolysine mixture in different mobile phases: effort of searching critical chromatography conditions. J Chromatogr A 2013; 1304:127-32. [PMID: 23876768 DOI: 10.1016/j.chroma.2013.06.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 11/23/2022]
Abstract
Our earlier study [J. Chromatogr. A 1218 (2011) 7765] on separation of an oligolysine mixture consisting of chains with 2-8 lysine residues (number of lysine residues, dp=2-8) by ion-pairing reversed-phase chromatography using heptafluorobutyric acid (HFBA) as an ion pairing reagent at fixed mobile phase acetonitrile (ACN) content was extended to isocratic elution conditions with different ACN percentages. The present work explored how manipulating the mobile phase HFBA concentration ([HFBA]) and %-ACN content influences separations of the oligolysine mixture. The closed pairing model was used to analyze variation of the retention factor as a function of [HFBA]. The partition coefficient of the paired peptide decreased with increasing %-ACN. Pairing of HFBA to oligolysine was cooperative, and the effect increased when %-ACN in the mobile phase was lowered. A plot of the partition coefficient as a function of %-ACN for oligolysines varying in dp converged at one ACN content, indicating a critical condition in which components of different dp co-elute.
Collapse
|