1
|
Treder N, Olędzka I, Roszkowska A, Bączek T, Plenis A. Control of retention mechanisms on an octadecyl-bonded silica column using ionic liquid-based mobile phase in analysis of cytostatic drugs by liquid chromatography. J Chromatogr A 2021; 1651:462257. [PMID: 34090057 DOI: 10.1016/j.chroma.2021.462257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/20/2022]
Abstract
This study assesses the potential of using ionic liquids (ILs) as mobile phase additives to control the retention mechanism of four cytostatic drugs: doxorubicin hydrochloride (DOX), epirubicin hydrochloride (EPI), daunorubicin hydrochloride (DAU) and idarubicin hydrochloride (IDA). Chromatographic separations were performed on a C18 analytical column (Discovery C18 150 × 4.6 mm, 5 µm) using six IL anions and four methyl-substituted IL cations with different alkyl chain lengths (alone or with the additional methyl group on the aromatic ring), or with an allyl group added as a cationic substituent. Thus, a total of 17 different ILs were assessed. The aqueous formic acid solution and phosphate buffer were used to compare how mobile phase composition affected the behavior of the analyzed cytostatic agents in the presence of ILs. In addition, the impacts of IL concentration, phosphate buffer concentration, and phosphate buffer pH on the final results were also considered. The ability to change analyte retention without negatively impacting peak shape or analytical efficiency was also controlled via the tailing factor and number of theoretical plates. Based on the results, the tested ILs were classified as either effective or ineffective mobile phase additives for separation of anthracyclines and identification by LC-FL technique.
Collapse
Affiliation(s)
- Natalia Treder
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, Gdańsk 80-416, Poland
| | - Ilona Olędzka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, Gdańsk 80-416, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, Gdańsk 80-416, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, Gdańsk 80-416, Poland
| | - Alina Plenis
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, Gdańsk 80-416, Poland.
| |
Collapse
|
2
|
Zhou J, Ren X, Luo Q, Gao D, Fu Q, Zhou D, Zu F, Xia Z, Wang L. Ionic liquid functionalized β-cyclodextrin and C18 mixed-mode stationary phase with achiral and chiral separation functions. J Chromatogr A 2020; 1634:461674. [DOI: 10.1016/j.chroma.2020.461674] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/02/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023]
|
3
|
Treder N, Bączek T, Wychodnik K, Rogowska J, Wolska L, Plenis A. The Influence of Ionic Liquids on the Effectiveness of Analytical Methods Used in the Monitoring of Human and Veterinary Pharmaceuticals in Biological and Environmental Samples-Trends and Perspectives. Molecules 2020; 25:E286. [PMID: 31936806 PMCID: PMC7024248 DOI: 10.3390/molecules25020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/27/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Recent years have seen the increased utilization of ionic liquids (ILs) in the development and optimization of analytical methods. Their unique and eco-friendly properties and the ability to modify their structure allows them to be useful both at the sample preparation stage and at the separation stage of the analytes. The use of ILs for the analysis of pharmaceuticals seems particularly interesting because of their systematic delivery to the environment. Nowadays, they are commonly detected in many countries at very low concentration levels. However, due to their specific physiological activity, pharmaceuticals are responsible for bioaccumulation and toxic effects in aquatic and terrestrial ecosystems as well as possibly upsetting the body's equilibrium, leading to the dangerous phenomenon of drug resistance. This review will provide a comprehensive summary of the use of ILs in various sample preparation procedures and separation methods for the determination of pharmaceuticals in environmental and biological matrices based on liquid-based chromatography (LC, SFC, TLC), gas chromatography (GC) and electromigration techniques (e.g., capillary electrophoresis (CE)). Moreover, the advantages and disadvantages of ILs, which can appear during extraction and separation, will be presented and attention will be given to the criteria to be followed during the selection of ILs for specific applications.
Collapse
Affiliation(s)
- Natalia Treder
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (N.T.); (T.B.)
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (N.T.); (T.B.)
| | - Katarzyna Wychodnik
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23 A, 80-204 Gdańsk, Poland; (K.W.); (J.R.); (L.W.)
| | - Justyna Rogowska
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23 A, 80-204 Gdańsk, Poland; (K.W.); (J.R.); (L.W.)
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23 A, 80-204 Gdańsk, Poland; (K.W.); (J.R.); (L.W.)
| | - Alina Plenis
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (N.T.); (T.B.)
| |
Collapse
|
4
|
Memon N, Qureshi T, Bhanger MI, Malik MI. Recent Trends in Fast Liquid Chromatography for Pharmaceutical Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180912125155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Liquid chromatography is the workhorse of analytical laboratories of pharmaceutical
companies for analysis of bulk drug materials, intermediates, drug products, impurities and
degradation products. This efficient technique is impeded by its long and tedious analysis procedures.
Continuous efforts of scientists to reduce the analysis time resulted in the development of three different
approaches namely, HTLC, chromatography using monolithic columns and UHPLC.
Methods:
Modern column technology and advances in chromatographic stationary phase including
silica-based monolithic columns and reduction in particle and column size (UHPLC) have not only
revolutionized the separation power of chromatographic analysis but also have remarkably reduced the
analysis time. Automated ultra high-performance chromatographic systems equipped with state-ofthe-
art software and detection systems have now spawned a new field of analysis, termed as Fast Liquid
Chromatography (FLC). The chromatographic approaches that can be included in FLC are hightemperature
liquid chromatography, chromatography using monolithic column, and ultrahigh performance
liquid chromatography.
Results:
This review summarizes the progress of FLC in pharmaceutical analysis during the period
from year 2008 to 2017 focusing on detecting pharmaceutical drugs in various matrices, characterizing
active compounds of natural products, and drug metabolites. High temperature, change in the mobile
phase, use of monolithic columns, new non-porous, semi-porous and fully porous reduced particle size
of/less than 3μm packed columns technology with high-pressure pumps have been extensively studied
and successively applied to real samples. These factors revolutionized the fast high-performance separations.
Conclusion:
Taking into account the recent development in fast liquid chromatography approaches,
future trends can be clearly predicated. UHPLC must be the most popular approach followed by the
use of monolithic columns. Use of high temperatures during analysis is not a feasible approach especially
for pharmaceutical analysis due to thermosensitive nature of analytes.
Collapse
Affiliation(s)
- Najma Memon
- National Centre of Excellence in Analytical Chemistry, Univeristy of Sindh, Jamshoro, Sindh, Pakistan
| | - Tahira Qureshi
- National Centre of Excellence in Analytical Chemistry, Univeristy of Sindh, Jamshoro, Sindh, Pakistan
| | - Muhammad Iqbal Bhanger
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Muhammad Imran Malik
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
5
|
Lin SL, Fuh MR. Preparation and characterization of vinylimidazole-based polymer monolithic stationary phases for reversed-phase and hydrophilic interaction capillary liquid chromatography. Talanta 2018; 187:73-82. [DOI: 10.1016/j.talanta.2018.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
|
6
|
Development and validation of a liquid chromatography-MS/MS method for simultaneous quantification of tenofovir and efavirenz in biological tissues and fluids. J Pharm Biomed Anal 2017; 136:120-125. [DOI: 10.1016/j.jpba.2016.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 11/20/2022]
|
7
|
Zhang M, Mallik AK, Takafuji M, Ihara H, Qiu H. Versatile ligands for high-performance liquid chromatography: An overview of ionic liquid-functionalized stationary phases. Anal Chim Acta 2015; 887:1-16. [DOI: 10.1016/j.aca.2015.04.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/26/2023]
|
8
|
Reddy AVB, Jaafar J, Aris AB, Majid ZA, Umar K, Talib J, Madhavi G. Development and validation of a rapid ultra high performance liquid chromatography with tandem mass spectrometry method for the simultaneous determination of darunavir, ritonavir, and tenofovir in human plasma: Application to human pharmacokinetics. J Sep Sci 2015; 38:2580-7. [DOI: 10.1002/jssc.201500250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/11/2015] [Accepted: 04/30/2015] [Indexed: 12/21/2022]
Affiliation(s)
| | - Jafariah Jaafar
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia; Johor Bahru Johor Malaysia
| | - Azmi Bin Aris
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment; Universiti Teknologi Malaysia; Johor Bahru Johor Malaysia
- Department of Environmental Engineering, Faculty of Civil Engineering; Universiti Teknologi Malaysia; Johor Bahru Johor Malaysia
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia; Johor Bahru Johor Malaysia
| | - Khalid Umar
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment; Universiti Teknologi Malaysia; Johor Bahru Johor Malaysia
- Department of Environmental Engineering, Faculty of Civil Engineering; Universiti Teknologi Malaysia; Johor Bahru Johor Malaysia
| | - Juhaizah Talib
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment; Universiti Teknologi Malaysia; Johor Bahru Johor Malaysia
- Department of Environmental Engineering, Faculty of Civil Engineering; Universiti Teknologi Malaysia; Johor Bahru Johor Malaysia
| | | |
Collapse
|
9
|
On the use of ionic liquids as mobile phase additives in high-performance liquid chromatography. A review. Anal Chim Acta 2015; 883:1-21. [PMID: 26088771 DOI: 10.1016/j.aca.2015.03.042] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/18/2023]
Abstract
The popularity of ionic liquids (ILs) has grown during the last decades in several analytical separation techniques. Consequently, the number of reports devoted to the applications of ILs is still increasing. This review is focused on the use of ILs (mainly imidazolium-based associated to chloride and tetrafluoroborate) as mobile phase additives in high-performance liquid chromatography (HPLC). In this approach, ILs just function as salts, but keep several kinds of intermolecular interactions, which are useful for chromatographic separations. Both cation and anion can be adsorbed on the stationary phase, creating a bilayer. This gives rise to hydrophobic, electrostatic and other specific interactions with the stationary phase and solutes, which modify the retention behaviour and peak shape. This review updates the advances in this field, with emphasis on topics not always deeply considered in the literature, such as the mechanisms of retention, the estimation of the suppressing potency of silanols, modelling and optimisation of the chromatographic performance, and the comparison with other additives traditionally used to avoid the silanol problem.
Collapse
|
10
|
Ding X, Tang Y, Sun A, Liu R. Simultaneous determination of three alkaloids in Huangbo using an ionic liquid as a mobile phase additive in reversed-phase liquid chromatography. J Sep Sci 2015; 38:374-80. [DOI: 10.1002/jssc.201400649] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/23/2014] [Accepted: 11/12/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoyuan Ding
- College of Chemistry and Chemical Engineering; Liaocheng University; Liaocheng China
| | - Yan Tang
- College of Chemistry and Chemical Engineering; Liaocheng University; Liaocheng China
| | - Ailing Sun
- College of Chemistry and Chemical Engineering; Liaocheng University; Liaocheng China
| | - Renmin Liu
- College of Chemistry and Chemical Engineering; Liaocheng University; Liaocheng China
| |
Collapse
|
11
|
Use of micellar liquid chromatography to analyze darunavir, ritonavir, emtricitabine, and tenofovir in plasma. J Sep Sci 2014; 37:2825-32. [DOI: 10.1002/jssc.201400574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 11/07/2022]
|
12
|
Huang Y, Yao S, Song H. Application of ionic liquids in liquid chromatography and electrodriven separation. J Chromatogr Sci 2014; 51:739-52. [PMID: 23833208 DOI: 10.1093/chromsci/bmt076] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ionic liquids (ILs) are salts in the liquid state at ambient temperature, which are nonvolatile, nonflammable with high thermal stability and dissolve easily for a wide range of inorganic and organic materials. As a kind of potential green solvent, they show high efficiency and selectivity in the field of separation research, especially in instrumental analysis. Thus far, ILs have been successfully applied by many related researchers in high-performance liquid chromatography and capillary electrophoresis as chromatographic stationary phases, mobile phase additives or electroosmotic flow modifiers. This paper provides a detailed review of these applications in the study of natural products, foods, drugs and other fine chemicals. Furthermore, the prospects of ILs in liquid chromatographic and electrodriven techniques are discussed.
Collapse
Affiliation(s)
- Yi Huang
- Department of Pharmaceutical and Biological Engineering, Sichuan University, Chengdu 610065, China
| | | | | |
Collapse
|
13
|
Zhang M, Liang X, Jiang S, Qiu H. Preparation and applications of surface-confined ionic-liquid stationary phases for liquid chromatography. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.09.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Ho TD, Zhang C, Hantao LW, Anderson JL. Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 2013; 86:262-85. [PMID: 24205989 DOI: 10.1021/ac4035554] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tien D Ho
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States
| | | | | | | |
Collapse
|
15
|
Flieger J, Siwek A, Pizoń M. Usefulness of chaotropic salt additive in RP-HPLC of organic nonionized compounds. J Sep Sci 2012; 36:469-76. [DOI: 10.1002/jssc.201200798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/27/2012] [Accepted: 10/07/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry; Medical University of Lublin; Lublin Poland
| | - Agata Siwek
- Department of Organic Chemistry; Medical University of Lublin; Lublin Poland
- Institute of Applied Radiation Chemistry; Technical University of Łódź; Łódź Poland
| | - Magdalena Pizoń
- Department of Analytical Chemistry; Medical University of Lublin; Lublin Poland
| |
Collapse
|
16
|
Joshi MD, Anderson JL. Recent advances of ionic liquids in separation science and mass spectrometry. RSC Adv 2012. [DOI: 10.1039/c2ra20142a] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|