1
|
Zhang JH, Xie SM, Yuan LM. Recent progress in the development of chiral stationary phases for high-performance liquid chromatography. J Sep Sci 2021; 45:51-77. [PMID: 34729907 DOI: 10.1002/jssc.202100593] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Separations and analyses of chiral compounds are important in many fields, including pharmaceutical production, preparation of chemical intermediates, and biochemistry. High-performance liquid chromatography using a chiral stationary phase is regarded as one of the most valuable methods for enantiomeric separation and analysis because it is highly efficient, is broadly applicable, and has powerful separation capability. The focus for development of this method is the identification of novel chiral stationary phases with superior recognition performance and good stability. The present article reviews recent progress in the development of new chiral stationary phases for high-performance liquid chromatography between January 2018 and June 2021. These newly reported chiral stationary phases are divided into three categories: small organic molecule-based (cyclodextrin and its derivatives, macrocyclic antibiotics, cinchona alkaloids, and other low molecular weight chiral molecules), macromolecule-based (cellulose and amylose derivatives, chitin and chitosan derivatives, and synthetic helical polymers) and chiral porous material-based (chiral metal-organic frameworks, chiral covalent organic frameworks, and chiral inorganic mesoporous silicas). Each type of chiral stationary phase is discussed in detail.
Collapse
Affiliation(s)
- Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| |
Collapse
|
2
|
Gao YY, Zhang YH, Zhang S, Chen W, Bai ZW. Chiral separation materials based on derivatives of 6-amino-6-deoxyamylose. Chirality 2021; 33:899-914. [PMID: 34608664 DOI: 10.1002/chir.23368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022]
Abstract
In order to develop new type of chiral separation materials, in this study, 6-amino-6-deoxyamylose was used as chiral starting material with which 10 derivatives were synthesized. The amino group in 6-amino-6-deoxyamylose was selectively acylated and then the hydroxyl groups were carbamoylated yielding amylose 6-amido-6-deoxy-2,3-bis(phenylcarbamate)s, which were employed as chiral selectors (CSs) for chiral stationary phases of high-performance liquid chromatography. The resulted 6-amido-6-deoxyamyloses and amylose 6-amido-6-deoxy-2,3-bis(phenylcarbamate)s were characterized by IR, 1 H NMR, and elemental analysis. Enantioseparation evaluations indicated that most of the CSs demonstrated a moderate chiral recognition capability. The 6-nonphenyl (6-nonPh) CS of amylose 6-cyclohexylformamido-6-deoxy-2,3-bis(3,5-dimethylphenylcarbamate) showed the highest enantioselectivity towards the tested chiral analytes; the phenyl-heterogeneous (Ph-hetero) CS of amylose 6-(4-methylbenzamido)-6-deoxy-2,3-bis(3,5-dimethylphenylcarbamate) baseline separated the most chiral analytes; the phenyl-homogeneous (Ph-homo) CS of amylose 6-(3,5-dimethylbenzamido)-6-deoxy-2,3-bis(3,5-dimethylphenylcarbamate) also exhibited a good enantioseparation capability among the developed CSs. Regarding Ph-hetero CSs, the enantioselectivity depended on the combination of the substituent at 6-position and that at 2- and 3-positions; as for Ph-homo CSs, the enantioselectivity was related to the substituent at 2-, 3-, and 6-positions; with respect to 6-nonPh CSs, the retention factor of most analytes on the corresponding CSPs was lower than that on Ph-hetero and Ph-homo CSPs in the same mobile phases, indicating π-π interactions did occur during enantioseparation. Although the substituent at 6-position could not provide π-π interactions, the 6-nonPh CSs demonstrated an equivalent or even higher enantioselectivity compared with the Ph-homo and Ph-hetero CSs.
Collapse
Affiliation(s)
- Ya-Ya Gao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yu-Hang Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Shan Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zheng-Wu Bai
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
3
|
Fan X, Cao L, Geng L, Ma Y, Wei Y, Wang Y. Polysaccharides as separation media for the separation of proteins, peptides and stereoisomers of amino acids. Int J Biol Macromol 2021; 186:616-638. [PMID: 34242648 DOI: 10.1016/j.ijbiomac.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
Reliable separation of peptides, amino acids and proteins as accurate as possible with the maximum conformation and biological activity is crucial and essential for drug discovery. Polysaccharide, as one of the most abundant natural biopolymers with optical activity on earth, is easy to be functionalized due to lots of hydroxyl groups on glucose units. Over the last few decades, polysaccharide derivatives are gradually employed as effective separation media. The highly-ordered helical structure contributes to complex, diverse molecular recognition ability, allowing polysaccharide derivatives to selectively interact with different analytes. This article reviews the development, application and prospects of polysaccharides as separation media in the separation of proteins, peptides and amino acids in recent years. The chiral molecules mechanism, advantages, limitations, development status and challenges faced by polysaccharides as separation media in molecular recognition are summarized. Meanwhile, the direction of its continued development and future prospects are also discussed.
Collapse
Affiliation(s)
- Xiao Fan
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China
| | - Lilong Cao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China
| | - Linna Geng
- Department of Infrastructure Engineering, The University of Melbourne, Victoria, Australia
| | - Yalu Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China.
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China.
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
4
|
Xu L, Wang H, Yi J, Meng M, Sun J, Yin X, Zhou X, Yin J, Wang Y, Hou J, Wei Q, Gong Y. Preparation and application of 3-(methylene-bis(1',4'-phenylene)dicarbamate-2,3-bis(3,5-dimethylphenylcarbamate)-amylose)-2-hydroxylpropoxy-propylsilyl-appended silica particles as chiral stationary phase for HPLC. J Chromatogr Sci 2021; 60:243-249. [PMID: 34160007 DOI: 10.1093/chromsci/bmab073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 11/19/2020] [Accepted: 05/29/2021] [Indexed: 11/13/2022]
Abstract
3-(Methylene-bis(1',4'-phenylene) dicarbamate-2,3-bis(3,5-dimethylphenylcarbamate)-amylose)-2-hydroxylpropoxy-propylsilyl-appended silica particles (DMP-AM-HPS), a new type of 2, 3-regioselectively substituted amylose-immobilized chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC), have been prepared by treatment of 3-(2,3-dihydroxyl-propoxy)-propylsilyl silica particles with 2,3-bis(3,5-dimethylphenylcarbamate)-amylose and 4,4'-diphenylmethane diisocyanate. The chemical characterization of the bonded particles DMP-AM-HPS has been carried out by elemental analysis and Fourier transform infrared spectroscopic analysis. The chromatographic performance of the DMP-AM-HPS has been evaluated in HPLC under multi-mode conditions including normal phase, reversed phase, and polar organic mobile phase conditions. The DMP-AM-HPS phase has exhibited excellent selectivity in separating enantiomers of a wide range of chiral drug compounds. The result also suggests that unsubstituted C6 hydroxyl groups in the regioselectively substituted amylose not only have important contributions to chiral recognitions and chromatographic separations, but also allow the DMP-AM-HPS to be used as a new type of amylose-immobilized CSP under multi-mode mobile phase conditions in HPLC.
Collapse
Affiliation(s)
- Lu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Hui Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Jingxuan Yi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Min Meng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Jiahui Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Jiale Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Yinan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Jasmine Hou
- ChiralTek Pte Ltd, 192 Westwood Crescent, 648559, Singapore
| | - Qunli Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China
| | - Yinhan Gong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, P.R. China.,ChiralTek Pte Ltd, 192 Westwood Crescent, 648559, Singapore
| |
Collapse
|
6
|
Francotte E, Zhang T. Preparation and evaluation of immobilized 4-methylbenzoylcellulose stationary phases for enantioselective separations. J Chromatogr A 2016; 1467:214-220. [PMID: 27503767 DOI: 10.1016/j.chroma.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/30/2016] [Accepted: 08/03/2016] [Indexed: 11/18/2022]
Abstract
A photochemical method for immobilizing polysaccharide derivatives on silica gel has been developed and applied to 4-methylbenzoyl cellulose (PMBC). The photochemically immobilized materials have been used as chiral stationary phases (CSPs) for the chromatographic separation of the stereoisomers of chiral molecules. Through to the immobilization which makes the chromatographic material insoluble in almost all organic solvents, there no restriction regarding the kind of solvent used in the mobile phase. This feature permits to considerably extend the possibilities to improve the selectivity of the separations and or the solubility of the solute in the mobile phase. The influence of various parameters such as immobilization process, cross-linker type and amount on the chromatographic properties and chiral recognition ability of the resulting CSPs has been investigated using a set of chiral molecules. The impact of the amount of coated polysaccharide material on chiral recognition ability was also examined.
Collapse
Affiliation(s)
- Eric Francotte
- Novartis Pharma AG, Global Discovery Chemistry, 4002 Basel, Switzerland.
| | - Tong Zhang
- Novartis Pharma AG, Global Discovery Chemistry, 4002 Basel, Switzerland
| |
Collapse
|