1
|
Poddar S, Sharmeen S, Hage DS. Affinity monolith chromatography: A review of general principles and recent developments. Electrophoresis 2021; 42:2577-2598. [PMID: 34293192 PMCID: PMC9536602 DOI: 10.1002/elps.202100163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.
Collapse
Affiliation(s)
- Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
2
|
Armutcu C, Tartan Ç, Özgür E, Nemutlu E, Uzun L. Phosphate Anion Imprinted Cryogel Cartridges for Selective Preconcentration of Phosphorylated Amino Acids from Protein Lysate: An Alternative Sorbent for Proteome Analyses. ChemistrySelect 2020. [DOI: 10.1002/slct.202001959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Canan Armutcu
- Hacettepe University Faculty of Science Department of Chemistry Ankara Turkey
| | - Çağrı Tartan
- Hacettepe University Faculty of Science Department of Chemistry Ankara Turkey
| | - Erdoğan Özgür
- Hacettepe University Faculty of Science Department of Chemistry Ankara Turkey
- Hacettepe University Advanced Technologies Application and Research Center Ankara Turkey
| | - Emirhan Nemutlu
- Hacettepe University Faculty of Pharmacy Analytical Chemistry Division Ankara Turkey
| | - Lokman Uzun
- Hacettepe University Faculty of Science Department of Chemistry Ankara Turkey
| |
Collapse
|
3
|
Sun L, Feng X, Zhong T, Zhang X. Preparation of supermacroporous cryogels with improved mechanical strength for efficient purification of lysozyme from chicken egg white. J Sep Sci 2020; 43:3315-3326. [DOI: 10.1002/jssc.202000255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Lifen Sun
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Xiyun Feng
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Tianyi Zhong
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Xufeng Zhang
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| |
Collapse
|
4
|
Saylan Y, Denizli A. Supermacroporous Composite Cryogels in Biomedical Applications. Gels 2019; 5:E20. [PMID: 30999704 PMCID: PMC6630583 DOI: 10.3390/gels5020020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 01/29/2023] Open
Abstract
Supermacroporous gels, called cryogels, are unique scaffolds that can be prepared by polymerization of monomer solution under sub-zero temperatures. They are widely used in many applications and have significant potential biomaterials, especially for biomedical applications due to their inherent interconnected supermacroporous structures and easy formation of composite polymers in comparison to other porous polymer synthesis techniques. This review highlights the fundamentals of supermacroporous cryogels and composite cryogels, and then comprehensively summarizes recent studies in preparation, functionalization, and utilization with mechanical, biological and physicochemical features, according to the biomedical applications. Furthermore, conclusions and outlooks are discussed for the use of these promising and durable supermacroporous composite cryogels.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey.
| |
Collapse
|
5
|
Bratskaya S, Privar Y, Nesterov D, Modin E, Kodess M, Slobodyuk A, Marinin D, Pestov A. Chitosan Gels and Cryogels Cross-Linked with Diglycidyl Ethers of Ethylene Glycol and Polyethylene Glycol in Acidic Media. Biomacromolecules 2019; 20:1635-1643. [DOI: 10.1021/acs.biomac.8b01817] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Svetlana Bratskaya
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Yuliya Privar
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Denis Nesterov
- I. Ya. Postovsky
Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 20, S. Kovalevskoy str., Yekaterinburg 620990, Russia
| | - Evgeny Modin
- CIC nanoGUNE, Donostia, San Sebastian 20018, Spain
| | - Mikhail Kodess
- I. Ya. Postovsky
Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 20, S. Kovalevskoy str., Yekaterinburg 620990, Russia
| | - Arseny Slobodyuk
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Dmitry Marinin
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Alexander Pestov
- I. Ya. Postovsky
Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 20, S. Kovalevskoy str., Yekaterinburg 620990, Russia
| |
Collapse
|
6
|
Lynch KB, Ren J, Beckner MA, He C, Liu S. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Anal Chim Acta 2018; 1046:48-68. [PMID: 30482303 DOI: 10.1016/j.aca.2018.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
In this article we survey 256 references (with an emphasis on the papers published in the past decade) on monolithic columns for intact protein separation. Protein enrichment and purification are included in the broadly defined separation. After a brief introduction, we describe the types of monolithic columns and modes of chromatographic separations employed for protein separations. While the majority of the work is still in the research and development phase, papers have been published toward utilizing monolithic columns for practical applications. We survey these papers as well in this review. Characteristics of selected methods along with their pros and cons will also be discussed.
Collapse
Affiliation(s)
- Kyle B Lynch
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Jiangtao Ren
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Matthew A Beckner
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Textile Road, Wuhan, 430073, PR China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States.
| |
Collapse
|
7
|
Li Z, Rodriguez E, Azaria S, Pekarek A, Hage DS. Affinity monolith chromatography: A review of general principles and applications. Electrophoresis 2017; 38:2837-2850. [PMID: 28474739 PMCID: PMC5671914 DOI: 10.1002/elps.201700101] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 01/20/2023]
Abstract
Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | | | - Shiden Azaria
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Allegra Pekarek
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - David S. Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
8
|
Stine KJ. Application of Porous Materials to Carbohydrate Chemistry and Glycoscience. Adv Carbohydr Chem Biochem 2017; 74:61-136. [PMID: 29173727 DOI: 10.1016/bs.accb.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is a growing interest in using a range of porous materials to meet research needs in carbohydrate chemistry and glycoscience in general. Among the applications of porous materials reviewed in this chapter, enrichment of glycans from biological samples prior to separation and analysis by mass spectrometry is a major emphasis. Porous materials offer high surface area, adjustable pore sizes, and tunable surface chemistry for interacting with glycans, by boronate affinity, hydrophilic interactions, molecular imprinting, and polar interactions. Among the materials covered in this review are mesoporous silica and related materials, porous graphitic carbon, mesoporous carbon, porous polymers, and nanoporous gold. In some applications, glycans are enzymatically or chemically released from glycoproteins or glycopeptides, and the porous materials have the advantage of size selectivity admitting only the glycans into the pores and excluding proteins. Immobilization of lectins onto porous materials of suitable pore size allows for the use of lectin-carbohydrate interactions in capture or separation of glycoproteins. Porous material surfaces modified with carbohydrates can be used for the selective capture of lectins. Controlled release of therapeutics from porous materials mediated by glycans has been reported, and so has therapeutic targeting using carbohydrate-modified porous particles. Additional applications of porous materials in glycoscience include their use in the supported synthesis of oligosaccharides and in the development of biosensors for glycans.
Collapse
|
9
|
Cheng T, Zhu S, Zhu B, Liu X, Zhang H. Highly selective capture of nucleosides with boronic acid functionalized polymer brushes prepared by atom transfer radical polymerization. J Sep Sci 2016; 39:1347-56. [DOI: 10.1002/jssc.201500968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Ting Cheng
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| | - Shuqiang Zhu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| | - Bin Zhu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| | - Xiaoyan Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| | - Haixia Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| |
Collapse
|
10
|
Baydemir G, Andaç M, Perçin I, Derazshamshir A, Denizli A. Molecularly imprinted composite cryogels for hemoglobin depletion from human blood. J Mol Recognit 2015; 27:528-36. [PMID: 25042707 DOI: 10.1002/jmr.2376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/12/2014] [Accepted: 03/20/2014] [Indexed: 11/06/2022]
Abstract
A molecularly imprinted composite cryogel (MICC) was prepared for depletion of hemoglobin from human blood prior to use in proteome applications. Poly(hydroxyethyl methacrylate) based MICC was prepared with high gel fraction yields up to 90%, and characterized by Fourier transform infrared spectrophotometer, scanning electron microscopy, swelling studies, flow dynamics and surface area measurements. MICC exhibited a high binding capacity and selectivity for hemoglobin in the presence of immunoglobulin G, albumin and myoglobin. MICC column was successfully applied in fast protein liquid chromatography system for selective depletion of hemoglobin for human blood. The depletion ratio was highly increased by embedding microspheres into the cryogel (93.2%). Finally, MICC can be reused many times with no apparent decrease in hemoglobin adsorption capacity.
Collapse
Affiliation(s)
- Gözde Baydemir
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
11
|
Ge C, Hu Y, Zhang F, Lv Y, Tan T. New agar microspheres for the separation and purification of natural products. J Sep Sci 2014; 37:3253-9. [DOI: 10.1002/jssc.201400819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Chunling Ge
- Beijing Key Lab of Bioprocess; College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| | - Yu Hu
- Beijing Key Lab of Bioprocess; College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| | - Fan Zhang
- Beijing Key Lab of Bioprocess; College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| | - Yongqin Lv
- Beijing Key Lab of Bioprocess; College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| | - Tianwei Tan
- Beijing Key Lab of Bioprocess; College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| |
Collapse
|
12
|
Ertürk G, Mattiasson B. Cryogels-versatile tools in bioseparation. J Chromatogr A 2014; 1357:24-35. [DOI: 10.1016/j.chroma.2014.05.055] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 11/26/2022]
|
13
|
Reichelt S, Becher J, Weisser J, Prager A, Decker U, Möller S, Berg A, Schnabelrauch M. Biocompatible polysaccharide-based cryogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 35:164-70. [PMID: 24411364 DOI: 10.1016/j.msec.2013.10.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/02/2013] [Accepted: 10/29/2013] [Indexed: 12/01/2022]
Abstract
This study focuses on the development of novel biocompatible macroporous cryogels by electron-beam assisted free-radical crosslinking reaction of polymerizable dextran and hyaluronan derivatives. As a main advantage this straightforward approach provides highly pure materials of high porosity without using additional crosslinkers or initiators. The cryogels were characterized with regard to their morphology and their basic properties including thermal and mechanical characteristics, and swellability. It was found that the applied irradiation dose and the chemical composition strongly influence the material properties of the resulting cryogels. Preliminary cytotoxicity tests illustrate the excellent in vitro-cytocompatibility of the fabricated cryogels making them especially attractive as matrices in tissue regeneration procedures.
Collapse
Affiliation(s)
- Senta Reichelt
- Leibniz Institute of Surface Modification, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Jana Becher
- Innovent e.V., Pruessingstr. 27B, 07745 Jena, Germany
| | | | - Andrea Prager
- Leibniz Institute of Surface Modification, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ulrich Decker
- Leibniz Institute of Surface Modification, Permoserstr. 15, 04318 Leipzig, Germany
| | | | - Albrecht Berg
- Innovent e.V., Pruessingstr. 27B, 07745 Jena, Germany
| | | |
Collapse
|
14
|
Perçin I, Aksöz E, Denizli A. Gelatin-Immobilised Poly(hydroxyethyl methacrylate) Cryogel for Affinity Purification of Fibronectin. Appl Biochem Biotechnol 2013; 171:352-65. [DOI: 10.1007/s12010-013-0352-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/17/2013] [Indexed: 11/30/2022]
|
15
|
Barroso T, Hussain A, Roque ACA, Aguiar-Ricardo A. Functional monolithic platforms: Chromatographic tools for antibody purification. Biotechnol J 2013; 8:671-81. [DOI: 10.1002/biot.201200328] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/11/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
|
16
|
Gun'ko VM, Savina IN, Mikhalovsky SV. Cryogels: morphological, structural and adsorption characterisation. Adv Colloid Interface Sci 2013; 187-188:1-46. [PMID: 23218507 DOI: 10.1016/j.cis.2012.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 12/21/2022]
Abstract
Experimental results on polymer, protein, and composite cryogels and data treatment methods used for morphological, textural, structural, adsorption and diffusion characterisation of the materials are analysed and compared. Treatment of microscopic images with specific software gives quantitative structural information on both native cryogels and freeze-dried materials that is useful to analyse the drying effects on their structure. A combination of cryoporometry, relaxometry, thermoporometry, small angle X-ray scattering (SAXS), equilibrium and kinetic adsorption of low and high-molecular weight compounds, diffusion breakthrough of macromolecules within macroporous cryogel membranes, studying interactions of cells with cryogels provides a consistent and comprehensive picture of textural, structural and adsorption properties of a variety of cryogels. This analysis allows us to establish certain regularities in the cryogel properties related to narrow (diameter 0.4<d<2 nm), middle (2<d<50 nm) and broad (50<d<100 nm) nanopores, micropores (100 nm<d<100 μm) and macropores (d>100 μm) with boundary sizes within modified life science pore classification. Particular attention is paid to water bound in cryogels in native superhydrated or freeze-dried states. At least, five states of water - free unbound, weakly bound (changes in the Gibbs free energy-ΔG<0.5-0.8 kJ/mol) and strongly bound (-ΔG>0.8 kJ/mol), and weakly associated (chemical shift of the proton resonance δ(H)=1-2 ppm) and strongly associated (δ(H)=3-6 ppm) waters can be distinguished in hydrated cryogels using (1)H NMR, DSC, TSDC, TG and other methods. Different software for image treatment or developed to analyse the data obtained with the adsorption, diffusion, SAXS, cryoporometry and thermoporometry methods and based on regularisation algorithms is analysed and used for the quantitative morphological, structural and adsorption characterisation of individual and composite cryogels, including polymers filled with solid nano- or microparticles.
Collapse
Affiliation(s)
- Vladimir M Gun'ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kiev 03164, Ukraine.
| | | | | |
Collapse
|
17
|
Sun S, Tang Y, Fu Q, Liu X, Guo L, Zhao Y, Chang C. Monolithic cryogels made of agarose–chitosan composite and loaded with agarose beads for purification of immunoglobulin G. Int J Biol Macromol 2012; 50:1002-7. [DOI: 10.1016/j.ijbiomac.2012.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
|