Qin ZN, Ding J, Yu QW, Zhou P, Feng YQ. A boronic acid-modified C
60 derivatization reagent for the rapid detection of 3-monochloropropane-1,2-diol using matrix-assisted laser desorption/ionization-mass spectrometry.
RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021;
35:e9169. [PMID:
34293234 DOI:
10.1002/rcm.9169]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE
3-Monochloropropane-1,2-diol (3-MCPD) is a well-known contaminant formed in food thermal processing, which could be found in a variety of foodstuffs. Due to its potential carcinogenicity, it was essential to quickly develop a rapid and high-throughput analytical method to monitor 3-MCPD in foodstuffs, which is described in this study.
METHODS
3-MCPD was extracted from foodstuffs and then was derivatized with a boronic acid-modified C60 (B-C60 ) through the boronic acid-diol reaction. Microwave heating was used to accelerate the derivatization reaction. Mass spectrometry (MS) analysis was conducted using matrix-assisted laser desorption/ionization-MS (MALDI-MS). The application of the method was validated using various smoked food samples.
RESULTS
The chemical derivatization of 3-MCPD with B-C60 enabled the addition of a C60 -tag to 3-MCPD. High-throughput analysis of the sample within 0.5 h was realized. A good linear range from 0.02 to 1.5 μg mL-1 for 3-MCPD was obtained, with a detection limit of 0.005 μg mL-1 . The recoveries in spiked foodstuffs ranged from 85.4% to 115.1% with relative standard deviations of 2.0%-14.2%. This method was successfully applied to detect 3-MCPD in smoked foodstuffs.
CONCLUSIONS
A quantitative method was developed for the detection of 3-MCPD in foodstuffs using B-C60 derivatization combined with MALDI-MS strategy. This proposed method may serve as a potential platform for the rapid and high-throughput analysis of 3-MCPD in foodstuffs for the purpose of food safety control.
Collapse