1
|
Separation Technologies for Whey Protein Fractionation. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-022-09330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Abstract
Whey is a by-product of cheese, casein, and yogurt manufacture. It contains a mixture of proteins that need to be isolated and purified to fully exploit their nutritional and functional characteristics. Protein-enriched fractions and highly purified proteins derived from whey have led to the production of valuable ingredients for many important food and pharmaceutical applications. This article provides a review on the separation principles behind both the commercial and emerging techniques used for whey protein fractionation, as well as the efficacy and limitations of these techniques in isolating and purifying individual whey proteins. The fractionation of whey proteins has mainly been achieved at commercial scale using membrane filtration, resin-based chromatography, and the integration of multiple technologies (e.g., precipitation, membrane filtration, and chromatography). Electromembrane separation and membrane chromatography are two main emerging techniques that have been developed substantially in recent years. Other new techniques such as aqueous two-phase separation and magnetic fishing are also discussed, but only a limited number of studies have reported their application in whey protein fractionation. This review offers useful insights into research directions and technology screening for academic researchers and dairy processors for the production of whey protein fractions with desired nutritional and functional properties.
Collapse
|
2
|
Radosavljević J, Stanić-Vučinić D, Stojadinović M, Radomirović M, Simović A, Radibratović M, Veličković TĆ. Application of Ion Exchange and Adsorption Techniques for Separation of
Whey Proteins from Bovine Milk. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666210108092338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The world production of whey was estimated to be more than 200 million tons per year.
Although whey is an important source of proteins with high nutritional value and biotechnological importance, it is still
considered as a by-product of the dairy industry with low economic value due to low industrial exploitation. There are
several challenges in the separation of whey proteins: low concentration, the complexity of the material and similar
properties (pI, molecular mass) of some proteins.
Methods:
A narrative review of all the relevant papers on the present methodologies based on ion-exchange and
adsorption principles for isolation of whey proteins, known to the authors, was conducted.
Results:
Traditional ion-exchange techniques are widely used for the separation and purification of the bovine whey
proteins. These methodologies, based on the anion or cation chromatographic procedures, as well as combination of
aforementioned techniques are still preferential methods for the isolation of the whey proteins on the laboratory scale.
However, more recent research on ion exchange membranes for this purpose has been introduced, with promising
potential to be applied on the pilot industrial scale. Newly developed methodologies based either on the ion-exchange
separation (for example: simulated moving bed chromatography, expanded bed adsorption, magnetic ion exchangers, etc.)
or adsorption (for example: adsorption on hydroxyapatite or activated carbon, or molecular imprinting) are promising
approaches for scaling up of the whey proteins’ purification processes.
Conclusion:
Many procedures based on ion exchange are successfully implemented for separation and purification of
whey proteins, providing protein preparations of moderate-to-high yield and satisfactory purity. However, the authors
anticipate further development of adsorption-based methodologies for separation of whey proteins by targeting the
differences in proteins’ structures rather than targeting the differences in molecular masses and pI. The complex
composite multilayered matrices, including also inorganic components, are promising materials for simultaneous
exploiting of the differences in the masses, pI and structures of whey proteins for the separation.
Collapse
Affiliation(s)
- Jelena Radosavljević
- Department of Biochemistry & Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12‑16, 11000 Belgrade,Serbia
| | - Dragana Stanić-Vučinić
- Department of Biochemistry & Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12‑16, 11000 Belgrade,Serbia
| | - Marija Stojadinović
- Department of Biochemistry & Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12‑16, 11000 Belgrade,Serbia
| | - Mirjana Radomirović
- Department of Biochemistry & Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12‑16, 11000 Belgrade,Serbia
| | - Ana Simović
- Department of Biochemistry & Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12‑16, 11000 Belgrade,Serbia
| | - Milica Radibratović
- Center for Chemistry, University of Belgrade - Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade,Serbia
| | - Tanja Ćirković Veličković
- Department of Biochemistry & Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12‑16, 11000 Belgrade,Serbia
| |
Collapse
|
3
|
Hydrophobic cryogels prepared via cryo-polymerization as oil carriers for biosynthesis of sophorolipids. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Pourrostam-Ravadanaq P, Safa KD, Abbasi H. Study of imidazole performance as pseudo-affinity ligand in the purification of IgG from bovine milk. Anal Biochem 2020; 597:113693. [PMID: 32201137 DOI: 10.1016/j.ab.2020.113693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022]
Abstract
The spherical sepharose CL-6B beads were activated by epichlorohydrin in different epoxy contents (80, 120 and 160 μmolepoxide/mLgel) and, l-histidine and imidazole as pseudo-affinity ligands were covalently immobilized to them. Some linkers with different length, (1,2-ethanediol diglycidyl ether and 1,4-butanediol diglycidyl ether) were synthesized for activation of sepharose and the activated sepharose beads modified with imidazole and the performance of these adsorbents in the purification of immunoglobulin G from bovine milk were evaluated. Among the l-histidine bearing adsorbents, higher adsorption of IgG (0.28 mg/mL) was obtained by adsorbent with the lower concentration of l-histidine. The highest amount of IgG adsorption (0.53 mg/mL) was obtained by imidazole bearing adsorbent with the highest amount of imidazole and Among the adsorbents with synthesized linkers, the adsorbent with 1,2-ethanediol diglycidyl ether showed better performance and was able to purify 0.25 mg/mL IgG with high purity. The synthesized pseudo-affinity adsorbents represented the abbility to purify immunoglobulin G in one-step process with high purity and efficiency.
Collapse
Affiliation(s)
| | - Kazem D Safa
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Hassan Abbasi
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Xu M, Qiao Z, Huang G, Long M, Yang T, Zhang X, Shao M, Xu Z, Rao Z. Optimization of l-arginine purification from Corynebacterium crenatum fermentation broth. J Sep Sci 2020; 43:2936-2948. [PMID: 32386338 DOI: 10.1002/jssc.202000067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/14/2020] [Accepted: 04/22/2020] [Indexed: 11/12/2022]
Abstract
l-Arginine has many special physiological and biochemical functions, with wide applications in the food and pharmaceutical industry. Few studies on the purification of l-arginine from fermentation broth have been conducted; however, none of them were systematic enough for industrial scale-up. Therefore, it is necessary to develop a highly efficient and systematic process for the purification of l-arginine from fermentation broth. In this study, we screened out a cation exchange resin, D155, having high exchange capacity, high selectivity, and easy elution capacity, and analyzed its adsorption isotherm, thermodynamics, and kinetics using different models. Further, the process parameters of fixed-bed ion exchange adsorption and elution were optimized, and the penetration curve during the operation was modeled. Based on the fixed-bed ion-exchange parameters, a 30-column continuous ion-exchange system was designed, and the flow velocity in each zone was optimized. Finally, to obtain a high purity of l-arginine, the purification tests were conducted using anion exchange resin 711, and an l-arginine yield of 99.1% and purity of 98.5% was obtained. This effective and economical method also provides a promising strategy for separation of other amino acids from the fermentation broth, which is of great significance to the l-arginine fermentation industry.
Collapse
Affiliation(s)
- Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China.,Jiangnan University (Rugao) Food Biotechnology Research Institute, Jiangsu, P. R. China
| | - Zhina Qiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Genshu Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China.,Jiangnan University (Rugao) Food Biotechnology Research Institute, Jiangsu, P. R. China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| |
Collapse
|
6
|
Kaur N, Sharma P, Jaimni S, Kehinde BA, Kaur S. Recent developments in purification techniques and industrial applications for whey valorization: A review. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1573169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Navpreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Seema Jaimni
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Bababode Adesegun Kehinde
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Shubhneet Kaur
- Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
7
|
Lynch KB, Ren J, Beckner MA, He C, Liu S. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Anal Chim Acta 2018; 1046:48-68. [PMID: 30482303 DOI: 10.1016/j.aca.2018.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
In this article we survey 256 references (with an emphasis on the papers published in the past decade) on monolithic columns for intact protein separation. Protein enrichment and purification are included in the broadly defined separation. After a brief introduction, we describe the types of monolithic columns and modes of chromatographic separations employed for protein separations. While the majority of the work is still in the research and development phase, papers have been published toward utilizing monolithic columns for practical applications. We survey these papers as well in this review. Characteristics of selected methods along with their pros and cons will also be discussed.
Collapse
Affiliation(s)
- Kyle B Lynch
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Jiangtao Ren
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Matthew A Beckner
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Textile Road, Wuhan, 430073, PR China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States.
| |
Collapse
|
8
|
Heidebrecht HJ, Kainz B, Schopf R, Godl K, Karcier Z, Kulozik U, Förster B. Isolation of biofunctional bovine immunoglobulin G from milk- and colostral whey with mixed-mode chromatography at lab and pilot scale. J Chromatogr A 2018; 1562:59-68. [DOI: 10.1016/j.chroma.2018.05.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 10/16/2022]
|
9
|
Separation of lactoperoxidase from bovine whey milk by cation exchange composite cryogel embedded macroporous cellulose beads. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Yun J, Wu H, Liu J, Shen S, Zhang S, Xu L, Yao K, Yao SJ. Strategy of Combining Prefiltration and Chromatography Using Composite Cryogels for Large-Scale Separation of Biotransformation Compounds from Crude High-Cell-Density Broth. Ind Eng Chem Res 2015. [DOI: 10.1021/ie504718p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junxian Yun
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hao Wu
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie Liu
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shaochuan Shen
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Songhong Zhang
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Linhong Xu
- Faculty of Mechanical & Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Kejian Yao
- State
Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shan-jing Yao
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Chromatographic adsorption of serum albumin and antibody proteins in cryogels with benzyl-quaternary amine ligands. J Chromatogr A 2015; 1381:173-83. [DOI: 10.1016/j.chroma.2014.11.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/05/2014] [Accepted: 11/28/2014] [Indexed: 11/24/2022]
|
12
|
Yan J, Zhang QL, Lin DQ, Yao SJ. Protein adsorption behavior and immunoglobulin separation with a mixed-mode resin based on p
-aminohippuric acid. J Sep Sci 2014; 37:2474-80. [DOI: 10.1002/jssc.201400520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Jun Yan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Qi-Lei Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| |
Collapse
|
13
|
Ye J, Yun J, Lin DQ, Xu L, Kirsebom H, Shen S, Yang G, Yao K, Guan YX, Yao SJ. Poly(hydroxyethyl methacrylate)-based composite cryogel with embedded macroporous cellulose beads for the separation of human serum immunoglobulin and albumin. J Sep Sci 2013; 36:3813-20. [DOI: 10.1002/jssc.201300911] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Jialei Ye
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Junxian Yun
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Dong-Qiang Lin
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Linhong Xu
- Faculty of Mechanical and Electronic Information; China University of Geosciences (Wuhan); Wuhan China
| | | | - Shaochuan Shen
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Gensheng Yang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Kejian Yao
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Yi-Xin Guan
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Shan-Jing Yao
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| |
Collapse
|