1
|
Morales N, Thickett SC, Maya F. Effect of crosslinker/porogen ratio on sponge-nested polymer monoliths for solid-phase extraction. J Chromatogr A 2024; 1730:465124. [PMID: 38959657 DOI: 10.1016/j.chroma.2024.465124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Polymer monoliths can be polymerised within different molds, but limited options are available for the preparation of free-standing polymer monoliths for analytical sample preparation, and in particular, solid-phase extraction (SPE). Commercial melamine-formaldehyde sponges can be used as supports for the preparation of polymer monoliths, due its flexibility, giving various shapes to monoliths. Herein, the crosslinker/porogen ratio of highly porous sponge-nested divinylbenzene (DVB) polymer monoliths has been evaluated. Monoliths prepared using different crosslinker/porogen ratios were applied to the extraction of bisphenol F, bisphenol A, bisphenol AF, and bisphenol B. Monoliths containing 50 wt % DVB and 50 wt % porogens presented the highest recovery of bisphenols. Under the optimised conditions, the developed method showed a linear range between 2.5 µg L-1 and 150 µg L-1 for BPA and BPAF, and between 5 µg L-1 and 150 µg L-1 for BPB and BPF. The limits of detection (LOD, S/N = 3) and limits of quantification (LOQ, S/N = 10) ranged from 0.36 µg L-1 to 1.09 µg L-1, and from 1.20 µg L-1 to 3.65 µg L-1, respectively. The recoveries for spiked bisphenols (10 µg L-1) in tap water and water contained in a polycarbonate containers were between 82 % and 114 %.
Collapse
Affiliation(s)
- Natalia Morales
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Stuart C Thickett
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
2
|
Correlation of the organic sorbents texture with chromatographic characteristics of monolithic HPLC columns based on 1-vinyl-2-pyrrolidone. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Urban J. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis. Anal Chim Acta 2022; 1199:338857. [PMID: 35227377 DOI: 10.1016/j.aca.2021.338857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
|
4
|
Neequaye T, El Rassi Z. Poly(carboxyethyl acrylate-co-ethylene glycol dimethacrylate) precursor monolith with bonded octadecyl ligands for use in reversed-phase capillary electrochromatography. Electrophoresis 2021; 42:2656-2663. [PMID: 34324209 DOI: 10.1002/elps.202100117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/05/2021] [Accepted: 07/24/2021] [Indexed: 11/06/2022]
Abstract
A carboxy precursor monolithic column, namely poly(carboxy ethyl acrylate-co-ethylene glycol dimethacrylate) was first produced in a 100 μm i.d. fused-silica capillary and subsequently surface bonded with n-octadecyl (C18 ) ligands by a post-polymerization functionalization process with octadecylamine in the presence of N,N´-dicyclohexylcarbodiimide. The bonding of octadecyl ligands was achieved via an amide linkage between the carboxy functions of the precursor monolith and the amino group of the octadecylamine compound. The resulting C18 monolith exhibited a very low electroosmotic flow (EOF), a fact that required the incorporation of small amounts of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) in the polymerization solution to produce a precursor monolith with fixed negative charges of sulfonate groups. This may indicate that the conjugation of the carboxy functions with octadecylamine occurred to a large extent so that the amount of residual carboxy functions was sparsely dispersed and not enough to produce a desirable EOF. The EOF velocity of the C18 column having fixed negative charges provided by the incorporated AMPS increased with increasing ACN content of the mobile phase signaling an increased binding of mobile phase ions to the polar amide linkages near the monolithic surface, and a decreased viscosity of the mobile phase, both of which would result in increased EOF velocity. The C18 monolithic column constituted a novel nonpolar sorbent for reversed-phase capillary electrochromatography for nonpolar solutes, e.g., alkylbenzenes, alkylphenyl ketones, and polyaromatic hydrocarbons, and slightly polar compounds including phenol and chlorophenols. The C18 monolithic column exhibited relatively high selectivity toward chlorophenols differing by one chloro substituent.
Collapse
Affiliation(s)
- Theophilus Neequaye
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
5
|
Komendová M, Svobodová P, Urban J. Photografting of polymer monoliths by a crosslinking monomer. J Chromatogr A 2020; 1631:461558. [DOI: 10.1016/j.chroma.2020.461558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023]
|
6
|
Abdulla FH, Rasheed AS. Hydrophilic Interaction Chromatography Analysis of Esculin in Ointments with UV Detection. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412916666200316124837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Esculin (ESCN) is used in the pharmaceutical industry with intravenous effect,
stimulant and anti-inflammatory capillaries, like vitamin P. It is a significant component of many
anti-inflammatory remedies such as esqusan, esflazid and anavenol [14]. It is also found in numerous
other remedies available in the market such as proctosone, anustat, and ariproct.
Objective:
To determine experimental conditions, to elucidate retention behavior of esculin in HILIC
mode. Moreover, to suggest new ways to separate and determinate esculin in ointments.
Methods:
Two hydrophilic columns were obtained by attaching molecules of sulfobetaine to polystyrene-
divinylbenzene particles were studied for chromatographic separation of esculin. The various
lengths of the chain are used as an investigative instrument for esculin retention conduct. The change
of ACN percentage, buffer concentrations and pH of mobile phase in order to study the retention conduct
of esculin.
Results:
A mixed mode hydrophilic interaction and ion exchange is the separation mechanism of esculin.
A calibration graph was created for two columns. The concentration range was 8-1200 ng.ml-1,
LOD 2.33 and 1.40, RSD% 0.31-1.02, , LOQ 7.07 and 4.25 ng.ml-1, Erel% 0.83 ± 0.68 and 0.545 ±
0.45, Recovery% 100.86 ± 0.68 and 1054 ± 0.45.
Conclusion:
The findings of the current study introduced new ZIC-HILIC methods for the separation
and quantitation of esculin.
Collapse
Affiliation(s)
- Fatma H. Abdulla
- Department of Biology, College of Sciences, University of Baghdad, Al-Jadriya Campus, 10071 Baghdad, Iraq
| | - Ashraf Saad Rasheed
- Department of Chemistry, College of Sciences, University of Baghdad, Al-Jadriya Campus, 10071 Baghdad, Iraq
| |
Collapse
|
7
|
Various Strategies in Post-Polymerization Functionalization of Organic Polymer-Based Monoliths Used in Liquid Phase Separation Techniques. Molecules 2020; 25:molecules25061323. [PMID: 32183194 PMCID: PMC7144949 DOI: 10.3390/molecules25061323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/28/2022] Open
Abstract
This review article is aimed at summarizing the various strategies that have been developed so far for post-polymerization functionalization (PPF) of organic polymer-based monoliths used in liquid phase separation techniques, namely HPLC at all scales and capillary electrochromatography (CEC). The reader will find the organic reactions performed on monolithic columns for grafting the chromatographic ligands needed for solving the separation problems on hand. This process involves therefore the fabrication of template monoliths that carry reactive functional groups to which chromatographic ligands can be covalently attached in a post-polymerization kind of approach. That is, the template monolith that has been optimized in terms of pore structure and other morphology can be readily modified and tailor made on column to fit a particular separation. The review article will not only cover the various strategies developed so far but also describe their separation applications. To the best of our knowledge, this review article will be the first of its kind.
Collapse
|
8
|
Urban J. Are we approaching a post‐monolithic era? J Sep Sci 2020; 43:1628-1633. [DOI: 10.1002/jssc.201901331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Jiří Urban
- Department of ChemistryFaculty of ScienceMasaryk University Brno Czech Republic
| |
Collapse
|
9
|
Komendová M, Urban J. Dual-retention mechanism of dopamine-related compounds on monolithic stationary phase with zwitterion functionality. J Chromatogr A 2020; 1618:460893. [PMID: 31980263 DOI: 10.1016/j.chroma.2020.460893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/28/2022]
Abstract
Seven retention models have been selected to describe a dual-retention behavior of ten dopamine-related compounds on polymer-based monolithic stationary phase with zwitterion sulfobetaine functionality. Regression quality, as well as a statistical significance of individual regression parameters, have been evaluated. Better regression performance showed two four-parameter models when compared to three-parameter models. On the other hand, limited number of experimental points disqualified statistical robustness of four-parameter models. Among three-parameter models, retention description introduced by Horváth and Liang provided comparable quality of regression at significantly improved robustness. Multivariate analysis of the best three-parameter models provided the description of physicochemical properties of dopamine precursors and metabolites. Principal component analysis and logistic regression allowed structural characterization of dopamine-related compounds based solely on regression parameters extracted from an isocratic elution data. Both polarity and type of functional groups has been correctly assigned for 3-methoxytyramine that has not been part of an evaluation study. Among applied dual-retention models, Horváth´s model, initially developed to describe a retention of ionic compounds on nonpolar stationary phases, provided robust regression of experimental data and allowed an extraction of structural characteristics of dopamine-related compounds.
Collapse
Affiliation(s)
- Martina Komendová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
10
|
Multichannel separation device with parallel electrochemical detection. J Chromatogr A 2019; 1610:460537. [PMID: 31537305 DOI: 10.1016/j.chroma.2019.460537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 11/23/2022]
Abstract
A device with four parallel channels was designed and manufactured by 3D printing in titanium. A simple experimental setup allowed splitting of the mobile phase in four parallel streams, such that a single sample could be analysed four times simultaneously. The four capillary channels were filled with a monolithic stationary phase, prepared using a zwitterionic functional monomer in combination with various dimethacrylate cross-linkers. The resulting stationary phases were applicable in both reversed-phase and hydrophilic-interaction retention mechanisms. The mobile-phase composition was optimized by means of a window diagram so as to obtain the highest possible resolution of dopamine precursors and metabolites on all columns. Miniaturized electrochemical detectors with carbon fibres as working electrodes and silver micro-wires as reference electrodes were integrated in the device at the end of each column. Experimental separations were successfully compared with those predicted by a three-parameter retention model. Finally, dopamine was determined in human urine to further confirm applicability of the developed device.
Collapse
|
11
|
Kartsova LA, Bessonova EA, Somova VD. Hydrophilic Interaction Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819050058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Maya F, Paull B. Recent strategies to enhance the performance of polymer monoliths for analytical separations. J Sep Sci 2019; 42:1564-1576. [DOI: 10.1002/jssc.201801126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS)School of Natural Sciences‐ChemistryUniversity of Tasmania Hobart TAS Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS)School of Natural Sciences‐ChemistryUniversity of Tasmania Hobart TAS Australia
| |
Collapse
|
13
|
Komendová M, Ribeiro LF, Urban J. Controlling selectivity of polymer-based monolithic stationary phases. J Sep Sci 2019; 42:952-961. [PMID: 30576067 DOI: 10.1002/jssc.201801046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022]
Abstract
In this work, we aimed to prepare a monolithic capillary column that allowed an isocratic separation of ten dopamine precursors and metabolites in a single run. Segments of five zwitterion sulfobetaine polymer monoliths have been modified by zwitterion phoshorylcholine by using an ultraviolet-initiated two-step photografting. Columns with 0, 33, 50, 66, and 100% of modified length were prepared. Effect of length of the modified segment and mobile phase composition has been tested. All columns provided dual-retention mechanism with reversed-phase retention in highly aqueous mobile phase and hydrophilic interaction mechanism in highly organic mobile phase. The retention mechanism was controlled by the composition of the mobile phase and has been described by a three-parameter model. We have used regression parameters to characterize the retention of analyzed compounds and to study individual pathways of dopamine metabolism. Comprehensive optimization of mobile phase composition allowed to find an optimal composition of the mobile phase and stationary phase surface chemistry arrangement to achieve desired separation. Optimized columns provided an isocratic separation of all tested compounds in less than nine min.
Collapse
Affiliation(s)
- Martina Komendová
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Yudina YS, Patrushev YV, Sidel’nikov VN. Comparative Estimation of the Selectivity Parameters for Monolith HPLC Columns with Organic Sorbents. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418080320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Patrushev Y, Yudina Y, Sidelnikov V. Monolithic rod columns for HPLC based on divinylbenzene-styrene copolymer with 1-vinylimidazole and 4-vinylpyridine. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1455149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Yuri Patrushev
- Department of Physicochemical Methods, Boreskov Institute of Catalysis, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Yulia Yudina
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir Sidelnikov
- Department of Physicochemical Methods, Boreskov Institute of Catalysis, Novosibirsk, Russia
| |
Collapse
|
16
|
Ding X, Yang J, Dong Y. Advancements in the preparation of high-performance liquid chromatographic organic polymer monoliths for the separation of small-molecule drugs. J Pharm Anal 2018; 8:75-85. [PMID: 29736293 PMCID: PMC5934735 DOI: 10.1016/j.jpha.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/21/2022] Open
Abstract
The various advantages of organic polymer monoliths, including relatively simple preparation processes, abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographers. Organic polymer monoliths prepared by traditional methods only have macropores and mesopores, and micropores of less than 50 nm are not commonly available. These typical monoliths are suitable for the separation of biological macromolecules such as proteins and nucleic acids, but their ability to separate small molecular compounds is poor. In recent years, researchers have successfully modified polymer monoliths to achieve uniform compact pore structures. In particular, microporous materials with pores of 50 nm or less that can provide a large enough surface area are the key to the separation of small molecules. In this review, preparation methods of polymer monoliths for high-performance liquid chromatography, including ultra-high cross-linking technology, post-surface modification, and the addition of nanomaterials, are discussed. Modified monolithic columns have been used successfully to separate small molecules with obvious improvements in column efficiency.
Collapse
Affiliation(s)
- Xiali Ding
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Jing Yang
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yuming Dong
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Lanzhou Universty-Techcomp (China) Ltd. Joint Laboratory of Pharmaceutical Analysis, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
17
|
Hydrophilic polymeric monoliths containing choline phosphate for separation science applications. Anal Chim Acta 2018; 999:184-189. [DOI: 10.1016/j.aca.2017.11.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 12/20/2022]
|
18
|
Komendová M, Metelka R, Urban J. Monolithic capillary column with an integrated electrochemical detector. J Chromatogr A 2017. [DOI: 10.1016/j.chroma.2017.06.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Jandera P, Janás P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review. Anal Chim Acta 2017; 967:12-32. [DOI: 10.1016/j.aca.2017.01.060] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/01/2022]
|
20
|
Chocholoušková M, Komendová M, Urban J. Retention of small molecules on polymethacrylate monolithic capillary columns. J Chromatogr A 2017; 1488:85-92. [PMID: 28162237 DOI: 10.1016/j.chroma.2017.01.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/19/2022]
Abstract
In this paper, the concentration of N-isopropylacrylamide in the polymerization mixture has been varied to prepare several polymethacrylate monolithic capillary columns. Polymer monoliths combining N-isopropylacrylamide with zwitterion monomer, as well as various dimethacrylate crosslinking monomers have been prepared and characterized. Uracil, thiourea, phenol, toluene, ethylbenzene, propylbenzene, and butylbenzene have been used to characterize retention of prepared capillary columns in the mobile phases with 40-95% of acetonitrile and at working temperatures ranging from 25 to 60°C. By an optimization of six-parameter polynomial models we have found that the retention of small molecules is affected mainly by the concentration of the acetonitrile in the mobile phase with very low contribution of working temperature and combined effect of acetonitrile concentration and temperature. Concentration of the mobile phase controlled also enthalpy of the retention. On the other hand, entropic contribution was almost insensitive to the change of the mobile phase composition, especially for mobile phases containing more than 60% of acetonitrile.
Collapse
Affiliation(s)
- Michaela Chocholoušková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Martina Komendová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Jiří Urban
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic.
| |
Collapse
|
21
|
Eeltink S, Wouters S, Dores-Sousa JL, Svec F. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides. J Chromatogr A 2017; 1498:8-21. [PMID: 28069168 DOI: 10.1016/j.chroma.2017.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/22/2016] [Accepted: 01/02/2017] [Indexed: 11/27/2022]
Abstract
This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown.
Collapse
Affiliation(s)
- Sebastiaan Eeltink
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Sam Wouters
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium
| | - José Luís Dores-Sousa
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frantisek Svec
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
22
|
Hypercrosslinked cholesterol-based polystyrene monolithic capillary columns. J Chromatogr A 2016; 1477:11-21. [DOI: 10.1016/j.chroma.2016.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/20/2016] [Accepted: 11/17/2016] [Indexed: 11/23/2022]
|
23
|
Janků S, Komendová M, Urban J. Development of an online solid-phase extraction with liquid chromatography method based on polymer monoliths for the determination of dopamine. J Sep Sci 2016; 39:4107-4115. [DOI: 10.1002/jssc.201600818] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Simona Janků
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Studentstká 573 Pardubice Czech Republic
| | - Martina Komendová
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Studentstká 573 Pardubice Czech Republic
| | - Jiří Urban
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Studentstká 573 Pardubice Czech Republic
| |
Collapse
|
24
|
Urban J. Current trends in the development of porous polymer monoliths for the separation of small molecules. J Sep Sci 2015; 39:51-68. [DOI: 10.1002/jssc.201501011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Jiří Urban
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|
25
|
Yong T, Wu F, Xiao H, Wan B. Silica modified with a thiourea derivative as a new stationary phase for hydrophilic interaction liquid chromatography. J Sep Sci 2015; 38:3852-3861. [DOI: 10.1002/jssc.201500607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Tian Yong
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Fan Wu
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Hongbin Xiao
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
- Beijing University of Chinese Medicine; Beijing China
| | - Boshun Wan
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| |
Collapse
|
26
|
Currivan S, Macak JM, Jandera P. Polymethacrylate monolithic columns for hydrophilic interaction liquid chromatography prepared using a secondary surface polymerization. J Chromatogr A 2015; 1402:82-93. [DOI: 10.1016/j.chroma.2015.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
|
27
|
Kip Ç, Erkakan D, Gökaltun A, Çelebi B, Tuncel A. Synthesis of a reactive polymethacrylate capillary monolith and its use as a starting material for the preparation of a stationary phase for hydrophilic interaction chromatography. J Chromatogr A 2015; 1396:86-97. [PMID: 25900740 DOI: 10.1016/j.chroma.2015.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
Abstract
Poly(3-chloro-2-hydroxypropyl methacrylate-co-ethylene dimethacrylate), poly(HPMA-Cl-co-EDMA) capillary monolith was proposed as a reactive starting material with tailoring flexibility for the preparation of monolithic stationary phases. The reactive capillary monolith was synthesized by free radical copolymerization of 3-chloro-2-hydroxypropyl methacrylate (HPMA-Cl) and ethylene dimethacrylate (EDMA). The mean pore size, the specific surface area and the permeability of poly(HPMA-Cl-co-EDMA) monoliths were controlled by adjusting porogen/monomer volume ratio, porogen composition and polymerization temperature. The porogen/monomer volume ratio was found as the most effective factor controlling the porous properties of poly(HPMA-Cl-co-EDMA) monolith. Triethanolamine (TEA-OH) functionalized polymethacrylate monoliths were prepared by using the reactive chloropropyl group of poly(HPMA-Cl-co-EDMA) monolith via one-pot and simple post-functionalization process. Poly(HPMA-Cl-co-EDMA) monolith reacted with TEA-OH was evaluated as a stationary phase in nano-hydrophilic interaction chromatography (nano-HILIC). Nucleotides, nucleosides and benzoic acid derivatives were satisfactorily separated with the plate heights up to 20μm. TEA-OH attached-poly(HPMA-Cl-co-EDMA) monolith showed a reproducible and stable retention behaviour in nano-HILIC runs. However, a decrease in the column performance (i.e. an increase in the plate height) was observed with the increasing retention factor. Hence "retention-dependent column efficiency" behaviour was shown for HILIC mode using the chromatographic data collected with the polymer based monolith synthesized.
Collapse
Affiliation(s)
- Çiğdem Kip
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey
| | - Damla Erkakan
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey
| | - Aslıhan Gökaltun
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey
| | - Bekir Çelebi
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey
| | - Ali Tuncel
- Hacettepe University, Chemical Engineering Department, Beytepe/Ankara, Turkey; Hacettepe University, Division of Nanotechnology & Nanomedicine, Ankara, Turkey.
| |
Collapse
|
28
|
Janků S, Škeříková V, Urban J. Nucleophilic substitution in preparation and surface modification of hypercrosslinked stationary phases. J Chromatogr A 2015; 1388:151-7. [DOI: 10.1016/j.chroma.2015.02.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
|
29
|
Preparation and evaluation of a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid. J Chromatogr A 2015; 1375:101-9. [DOI: 10.1016/j.chroma.2014.11.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/23/2014] [Accepted: 11/28/2014] [Indexed: 12/21/2022]
|
30
|
Jonnada M, Rathnasekara R, El Rassi Z. Recent advances in nonpolar and polar organic monoliths for HPLC and CEC. Electrophoresis 2014; 36:76-100. [PMID: 25266173 DOI: 10.1002/elps.201400426] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 01/17/2023]
Abstract
This article is aimed at providing a review of the progress made in the field over the period 2011 to present in order to expand in parts on two previous reviews (S. Karenga and Z. El Rassi, Electrophoresis, 2011, 32, 90-104; D. Gunasena and Z. El Rassi, Electrophoresis, 2012, 33, 251-261). In brief, this review article describes progress made in nonpolar and polar monoliths used in RP HPLC and CEC and in hydrophilic interaction LC/CEC, respectively. This article is by no means an exhaustive review of the literature; it is rather a survey of the recent progress made in the field with 69 references published on nonpolar and polar polymeric monoliths.
Collapse
Affiliation(s)
- Murthy Jonnada
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA
| | | | | |
Collapse
|
31
|
Svec F, Lv Y. Advances and Recent Trends in the Field of Monolithic Columns for Chromatography. Anal Chem 2014; 87:250-73. [DOI: 10.1021/ac504059c] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Frantisek Svec
- International
Research Center
for Soft Matter, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yongqin Lv
- International
Research Center
for Soft Matter, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
32
|
Moravcová D, Haapala M, Planeta J, Hyötyläinen T, Kostiainen R, Wiedmer SK. Separation of nucleobases, nucleosides, and nucleotides using two zwitterionic silica-based monolithic capillary columns coupled with tandem mass spectrometry. J Chromatogr A 2014; 1373:90-6. [PMID: 25465366 DOI: 10.1016/j.chroma.2014.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
The capability of employing synthesized zwitterionic silica-based monolithic capillary columns (140 mm × 0.1mm) for separation of highly polar and hydrophilic nucleobases, nucleosides, and nucleotides in hydrophilic interaction chromatography is reported. The suitability of the columns for on-line conjunction with electrospray tandem mass spectrometry was explored. Our results show that the grafted layer of zwitterionic monomer ([2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)-ammonium hydroxide or 2-methacryloyloxyethyl phosphorylcholine) on the silica monolithic surface significantly improved the separation selectivity and reproducibility, as compared to the bare silica monolith. The stepwise elution from 90% to 70% of acetonitrile enabled separation of a complex sample mixture containing 21 compounds with a total analysis time less than 40 min.
Collapse
Affiliation(s)
- Dana Moravcová
- Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 60200 Brno, Czech Republic.
| | - Markus Haapala
- Faculty of Pharmacy, P.O. Box 56, 00014 University of Helsinki, Finland
| | - Josef Planeta
- Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 60200 Brno, Czech Republic
| | | | - Risto Kostiainen
- Faculty of Pharmacy, P.O. Box 56, 00014 University of Helsinki, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland.
| |
Collapse
|
33
|
Urban J, Škeříková V. Effect of hypercrosslinking conditions on pore size distribution and efficiency of monolithic stationary phases. J Sep Sci 2014; 37:3082-9. [DOI: 10.1002/jssc.201400730] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jiří Urban
- Department of Analytical Chemistry; Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Veronika Škeříková
- Department of Analytical Chemistry; Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|
34
|
|