1
|
Li J, Kim JT, Li H, Cho HY, Kim JS, Choi DY, Wang C, Lee SS. LSPR-susceptible metasurface platform for spectrometer-less and AI-empowered diagnostic biomolecule detection. Anal Chim Acta 2024; 1326:343094. [PMID: 39260911 DOI: 10.1016/j.aca.2024.343094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024]
Abstract
In response to the growing demand for biomolecular diagnostics, metasurface (MS) platforms based on high-Q resonators have demonstrated their capability to detect analytes with smart data processing and image analysis technologies. However, high-Q resonator meta-atom arrays are highly sensitive to the fabrication process and chemical surface functionalization. Thus, spectrum scanning systems are required to monitor the resonant wavelength changes at every step, from fabrication to practical sensing. In this study, we propose an innovative dielectric resonator-independent MS platform that enables spectrometer-less biomolecule detection using artificial intelligence (AI) at a visible wavelength. Functionalizing the focused vortex MS to capture gold nanoparticle (AuNP)-based sandwich immunoassays causes the resulting vortex beam profiles to be significantly affected by the localized surface plasmon resonance (LSPR) occurring between AuNPs and meta-atoms. The convolutional neural network algorithm was carefully trained to accurately classify the AuNP concentration-dependent focused vortex beam, facilitating the determination of the concentration of the targeted diagnostic biomolecule. Successful in situ identification of various biomolecule concentrations was achieved with over 99 % accuracy, indicating the potential of combining an LSPR-susceptible MS platform and AI for continuously tracking various chemical and biological compounds.
Collapse
Affiliation(s)
- Jinke Li
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Nano Device Application Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Jin Tae Kim
- Quantum Technology Research Department, Electronics and Telecommunications Research Institute, Daejeon, 34129, Republic of Korea.
| | - Hongliang Li
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Nano Device Application Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Hyo-Young Cho
- Digital Biomedical Research Division, Electronics and Telecommunications Research Institute, Daejeon, 34129, Republic of Korea
| | - Jin-Soo Kim
- Nano Optics Laboratory, Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Duk-Yong Choi
- Department of Quantum Science and Technology, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Chenxi Wang
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Nano Device Application Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sang-Shin Lee
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Nano Device Application Center, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
2
|
Leščić Ašler I, Radman K, Jelić Matošević Z, Bertoša B, Weiss VU, Marchetti-Deschmann M. Exploring the manganese-dependent interaction between a transcription factor and its corresponding DNA: insights from gas-phase electrophoresis on a nES GEMMA instrument. Anal Bioanal Chem 2024; 416:5377-5386. [PMID: 39172237 PMCID: PMC11416365 DOI: 10.1007/s00216-024-05473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Manganese ion homeostasis is vital for bacteria and is achieved via manganese-dependent transcription factors. Manganese mediation of transcription factor attachment to the corresponding oligonucleotide sequences can be investigated, e.g. via electrophoretic mobility shift assays (EMSA). Formation of specific biocomplexes leads to differences in the migration pattern upon gel electrophoresis. Focusing on electrophoresis in the gas-phase, applying a nano electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA) also known as nES differential mobility analyzer (nES DMA), and on transcription factors (MntR proteins) from Bacillus subtilis and Mycobacterium tuberculosis, we took interest in the gas-phase electrophoresis of the corresponding biospecific complexes. We compared nES GEMMA, separating analytes in the nanometer regime (a few to several hundred nm in diameter) in the gas-phase in their native state according to particle size, to EMSA data. Indeed we were able to demonstrate manganese-mediated attachment of MntR to target genomic sequences with both analytical techniques. Despite some inherent pitfalls of the nES GEMMA method like analyte/instrument surface interactions, we were able to detect the target complexes. Moreover, we were able to calculate the molecular weight (MW) of the obtained species by application of a correlation function based on nES GEMMA obtained data. As gas-phase electrophoresis also offers the possibility of offline hyphenation to orthogonal analysis techniques, we are confident that nES GEMMA measurements are not just complementary to EMSA, but will offer the possibility of further in-depth characterization of biocomplexes in the future.
Collapse
Affiliation(s)
- Ivana Leščić Ašler
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Katarina Radman
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Zoe Jelić Matošević
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9-164 CTA, 1060, Vienna, Austria.
| | | |
Collapse
|
3
|
Almeida L, van Roey R, Patente TA, Otto F, Veldhuizen T, Ghorasaini M, van Diepen A, Schramm G, Liu J, Idborg H, Korotkova M, Jakobsson PJ, Giera M, Hokke CH, Everts B. High-mannose glycans from Schistosoma mansoni eggs are important for priming of Th2 responses via Dectin-2 and prostaglandin E2. Front Immunol 2024; 15:1372927. [PMID: 38742105 PMCID: PMC11089121 DOI: 10.3389/fimmu.2024.1372927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.
Collapse
Affiliation(s)
- Luís Almeida
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Ruthger van Roey
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Frank Otto
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Tom Veldhuizen
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Mohan Ghorasaini
- Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | - Angela van Diepen
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Gabriele Schramm
- Experimental Pneumology, Research Centre Borstel, Borstel, Germany
| | - Jianyang Liu
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Giera
- Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Bart Everts
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
4
|
Kakuda L, Maia Campos PMBG, Oliveira WP. Development and Efficacy Evaluation of Innovative Cosmetic Formulations with Caryocar brasiliense Fruit Pulp Oil Encapsulated in Freeze-Dried Liposomes. Pharmaceutics 2024; 16:595. [PMID: 38794256 PMCID: PMC11124447 DOI: 10.3390/pharmaceutics16050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Encapsulation and drying technologies allow the engineering of innovative raw materials from plant biodiversity, with potential applications in pharmaceutical and cosmetic fields. Lipid-based nanoencapsulation stands out for its efficiency, ease of production, and versatility in encapsulating substances, whether hydrophilic or lipophilic. This work aimed at encapsulating pequi oil in liposomes and freeze-dried liposomes to enhance its stability and functional benefits, such as skin hydration and anti-aging effects, for use in innovative cosmetic formulations. Pequi oil-extracted from the Caryocar brasiliense fruit pulp, a plant species from Brazilian plant biodiversity-is rich in secondary metabolites and fatty acids. Liposomes and dried liposomes offer controlled production processes and seamless integration into cosmetic formulations. The physicochemical analysis of the developed liposomes confirmed that the formulations are homogeneous and electrokinetically stable, as evidenced by consistent particle size distribution and zeta potential values, respectively. The gel-type formulations loaded with the dried liposomes exhibit enhanced skin hydration, improved barrier function, and refined microrelief, indicating improvements in skin conditions. These results highlight the potential of dried liposomes containing pequi oil for the development of innovative cosmeceutical products. This research contributes to the valorization of Brazilian biodiversity by presenting an innovative approach to leveraging the dermatological benefits of pequi oil in cosmetic applications.
Collapse
Affiliation(s)
| | | | - Wanderley P. Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (L.K.); (P.M.B.G.M.C.)
| |
Collapse
|
5
|
Ferreyra Maillard APV, Bordón A, Cutro AC, Dalmasso PR, Hollmann A. Green One-Step Synthesis of Silver Nanoparticles Obtained from Schinus areira Leaf Extract: Characterization and Antibacterial Mechanism Analysis. Appl Biochem Biotechnol 2024; 196:1104-1121. [PMID: 37335458 DOI: 10.1007/s12010-023-04591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
The increased emergence of antibiotic-resistant bacteria is a serious health problem worldwide. In this sense, silver nanoparticles (AgNPs) have received increasing attention for their antimicrobial activity. In this context, the goal of this study was to produce AgNPs by a green synthesis protocol using an aqueous leaf extract of Schinus areira as biocomposite to later characterize their antimicrobial action. The nanomaterials obtained were characterized by UV‒vis spectroscopy, DLS, TEM, and Raman, confirming the presence of quasi-spherical AgNPs with a negative surface charge and diameter around 11 nm. Afterward, the minimum inhibitory and bactericidal concentration of the AgNPs against Staphylococcus aureus and Escherichia coli were obtained, showing high antibacterial activity. In both of the examined bacteria, the AgNPs were able to raise intracellular ROS levels. In E. coli, the AgNPs can harm the bacterial membrane as well. Overall, it can be concluded that it was possible to obtain AgNPs with colloidal stability and antibacterial activity against Gram-positive and Gram-negative bacteria. Our findings point to at least two separate mechanisms that can cause cell death, one of which involves bacterial membrane damage and the other of which involves intracellular ROS induction.
Collapse
Affiliation(s)
- Anike P V Ferreyra Maillard
- Laboratorio de Compuestos Bioactivos, Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9 Km 1125, 4206, Santiago del Estero, Argentina
| | - Anahí Bordón
- Laboratorio de Compuestos Bioactivos, Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9 Km 1125, 4206, Santiago del Estero, Argentina
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, RN 9 Km 1125, 4206, Santiago del Estero, Argentina
| | - Andrea C Cutro
- Laboratorio de Compuestos Bioactivos, Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9 Km 1125, 4206, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero, Calle Reforma del 18 N° 1234, 4200, Santiago del Estero, Argentina
| | - Pablo R Dalmasso
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López Esq. Cruz Roja Argentina, 5016, Córdoba, Argentina.
| | - Axel Hollmann
- Laboratorio de Compuestos Bioactivos, Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9 Km 1125, 4206, Santiago del Estero, Argentina.
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Argentina.
| |
Collapse
|
6
|
Matteoli G, Luin S, Bellucci L, Nifosì R, Beltram F, Signore G. Aptamer-based gold nanoparticle aggregates for ultrasensitive amplification-free detection of PSMA. Sci Rep 2023; 13:19926. [PMID: 37968295 PMCID: PMC10651859 DOI: 10.1038/s41598-023-46974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
Early diagnosis is one of the most important factors in determining the prognosis in cancer. Sensitive detection and quantification of tumour-specific biomarkers have the potential to improve significantly our diagnostic capability. Here, we introduce a triggerable aptamer-based nanostructure based on an oligonucleotide/gold nanoparticle architecture that selectively disassembles in the presence of the biomarker of interest; its optimization is based also on in-silico determination of the aptamer nucleotides interactions with the protein of interest. We demonstrate this scheme for the case of Prostate Specific Membrane Antigen (PSMA) and PSMA derived from PSMA-positive exosomes. We tested the disassembly of the system by diameter and count rate measurements in dynamic light scattering, and by inspection of its plasmon resonance shift, upon addition of PSMA, finding appreciable differences down to the sub-picomolar range; this points towards the possibility that this approach may lead to sensors competitive with diagnostic biochemical assays that require enzymatic amplification. More generally, this scheme has the potential to be applied to a broad range of pathologies with specific identified biomarkers.
Collapse
Affiliation(s)
- Giulia Matteoli
- Fondazione Pisana Per La Scienza ONLUS, Via Ferruccio Giovanetti 13, 56017, San Giuliano Terme, PI, Italy
- National Enterprise for Nanoscience and Nanotechnology (NEST), Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Stefano Luin
- National Enterprise for Nanoscience and Nanotechnology (NEST), Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.
- NEST, Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127, Pisa, Italy.
| | - Luca Bellucci
- National Enterprise for Nanoscience and Nanotechnology (NEST), Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127, Pisa, Italy
| | - Riccardo Nifosì
- National Enterprise for Nanoscience and Nanotechnology (NEST), Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127, Pisa, Italy
| | - Fabio Beltram
- National Enterprise for Nanoscience and Nanotechnology (NEST), Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Giovanni Signore
- Fondazione Pisana Per La Scienza ONLUS, Via Ferruccio Giovanetti 13, 56017, San Giuliano Terme, PI, Italy.
- Biochemistry Unit, Department of Biology, University of Pisa, via san Zeno 51, 56123, Pisa, Italy.
| |
Collapse
|
7
|
Zoratto S, Heuser T, Friedbacher G, Pletzenauer R, Graninger M, Marchetti-Deschmann M, Weiss VU. Adeno-Associated Virus-like Particles' Response to pH Changes as Revealed by nES-DMA. Viruses 2023; 15:1361. [PMID: 37376661 DOI: 10.3390/v15061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Gas-phase electrophoresis on a nano-Electrospray Gas-phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) separates single-charged, native analytes according to the surface-dry particle size. A volatile electrolyte, often ammonium acetate, is a prerequisite for electrospraying. Over the years, nES GEMMA has demonstrated its unique capability to investigate (bio-)nanoparticle containing samples in respect to composition, analyte size, size distribution, and particle numbers. Virus-like particles (VLPs), being non-infectious vectors, are often employed for gene therapy applications. Focusing on adeno-associated virus 8 (AAV8) based VLPs, we investigated the response of these bionanoparticles to pH changes via nES GEMMA as ammonium acetate is known to exhibit these changes upon electrospraying. Indeed, slight yet significant differences in VLP diameters in relation to pH changes are found between empty and DNA-cargo-filled assemblies. Additionally, filled VLPs exhibit aggregation in dependence on the applied electrolyte's pH, as corroborated by atomic force microscopy. In contrast, cryogenic transmission electron microscopy did not relate to changes in the overall particle size but in the substantial particle's shape based on cargo conditions. Overall, we conclude that for VLP characterization, the pH of the applied electrolyte solution has to be closely monitored, as variations in pH might account for drastic changes in particles and VLP behavior. Likewise, extrapolation of VLP behavior from empty to filled particles has to be carried out with caution.
Collapse
Affiliation(s)
- Samuele Zoratto
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| | - Thomas Heuser
- Electron Microscopy Facility, Vienna BioCenter Core Facilities GmbH, A-1030 Vienna, Austria
| | - Gernot Friedbacher
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| | - Robert Pletzenauer
- Pharmaceutical Sciences, Baxalta Innovations GmbH (Part of Takeda), A-1221 Vienna, Austria
| | - Michael Graninger
- Pharmaceutical Sciences, Baxalta Innovations GmbH (Part of Takeda), A-1221 Vienna, Austria
| | | | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| |
Collapse
|
8
|
Koushki E, Koushki A. Simple Method for Optical Detection and Characterization of Surface Agents on Conjugated Gold Nanoparticles. PLASMONICS (NORWELL, MASS.) 2023; 18:1151-1157. [PMID: 37229149 PMCID: PMC10106889 DOI: 10.1007/s11468-023-01843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
In this article, we propose a simple method to calculate electrical permittivity and refractive index of surface agents of gold nanoparticles (Au NPs), in which it is possible to find the refractive index of surface agents shell by using the absorption peak of the gold nano-colloid. One of the usual tests for detection of surface agents is colorimetric methods based on the change of color of Au NPs. The color change is mainly due to the shift of localized surface plasmon resonance which is related to electrical interactions of surface agents. Although there are many mathematical models for simulating the absorption spectrum and calculating the plasmonic peak, using them is not simple and possible for everyone due to the need for programming. Here, the necessary simulations have been performed for different values of refractive index of surface agents and particle size, and absorption peaks have been obtained. Using numerical methods, a simple formula is obtained between the wavelength of plasmonic peak, the ratio of hydrodynamic diameter to Feret size of the particles, and the refractive index of the surface agents. This method can help researchers to obtain the refractive index and consequently the type or concentration of surface agents around Au NPs without the need for programming or complex mathematical operations. It can also open new horizons in analyzing colorimetric diagnosis of biological agents such as viral antibodies, antigens, and other biological agents.
Collapse
Affiliation(s)
- Ehsan Koushki
- Department of Physics, Faculty of Science, Hakim Sabzevari University, Sabzevar, 96179-76487 Iran
| | - Abbas Koushki
- Faculty of Mathematics, Hakim Sabzevari University, Sabzevar, 96179-76487 Iran
| |
Collapse
|
9
|
Nanoparticles for Biomedical Application and Their Synthesis. Polymers (Basel) 2022; 14:polym14224961. [PMID: 36433085 PMCID: PMC9693622 DOI: 10.3390/polym14224961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Tremendous developments in nanotechnology have revolutionized the impact of nanoparticles (NPs) in the scientific community and, more recently, in society. Nanomaterials are by their definition materials that have at least one dimension in range of 1 to 100 nm. Nanoparticles are found in many types of different technological and scientific applications and innovations, from delicate electronics to state-of-the-art medical treatments. Medicine has recognized the importance of polymer materials coated with NPs and utilizes them widely thanks to their excellent physical, chemical, antibacterial, antimicrobial, and protective properties. Emphasis is given to their biomedical application, as the nanoscale structures are in the range of many biological molecules. Through this, they can achieve many important features such as targeted drug delivery, imaging, photo thermal therapy, and sensors. Moreover, by manipulating in a "nano-scale" range, their characteristic can be modified in order to obtain the desired properties needed in particular biomedical fields, such as electronic, optical, surface plasmon resonance, and physic-chemical features.
Collapse
|
10
|
Khatoon A, Khand NH, Mallah A, Solangi AR, Memon SQ, Memon AF, Karaman C, Karimi F, Karaman O. A Fast and Reliable Electrophoretic Method for Size-Based Characterization of Silver Nanoparticles. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amna Khatoon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080Jamshoro, Pakistan
| | - Nadir H. Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080Jamshoro, Pakistan
| | - Arfana Mallah
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491Trondheim, Norway
- M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro76080, Sindh, Pakistan
| | - Amber R. Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080Jamshoro, Pakistan
| | - Saima Q. Memon
- M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro76080, Sindh, Pakistan
| | - Almas F. Memon
- Department of Chemistry, Government College University, Hyderabad, Sindh71000, Pakistan
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya07070, Turkey
- School of Engineering, Lebanese American University, Byblos1102 2801, Lebanon
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan9477177870, Iran
| | - Onur Karaman
- Department of Medical Imaging Techniques, Akdeniz University, Antalya07070, Turkey
| |
Collapse
|
11
|
Dzhagan V, Kapush O, Plokhovska S, Buziashvili A, Pirko Y, Yeshchenko O, Yukhymchuk V, Yemets A, Zahn DRT. Plasmonic colloidal Au nanoparticles in DMSO: a facile synthesis and characterisation. RSC Adv 2022; 12:21591-21599. [PMID: 35975078 PMCID: PMC9346627 DOI: 10.1039/d2ra03605c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
We report a new pathway for the synthesis of plasmonic gold nanoparticles (Au NPs) in a bio-compatible medium. A modified room temperature approach based on the standard Turkevich synthesis, using sodium citrate as a reducing and stabilizing agent, results in a highly stable colloidal suspension of Au NPs in dimethyl sulfoxide (DMSO). The mean NP size of about 15 nm with a fairly low size distribution is revealed by scanning electron microscopy. The stability test through UV-vis absorption spectroscopy indicates no sign of aggregation for months. The Au NPs are also characterized by X-ray photoelectron, Raman scattering, and FTIR spectroscopies. The stabilisation mechanism of the Au NPs in DMSO is concluded to be similar to that of NPs synthesized in water. The Au NPs obtained in this work are applicable as SERS substrates, as proved by common analytes. In terms of bio-applications, they do not possess such side-effects as pronounced antibacterial activity, based on the tests performed on non-pathogenic Gram-positive or Gram-negative bacteria.
Collapse
Affiliation(s)
- Volodymyr Dzhagan
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine Kyiv Ukraine
- Physics Department, Taras Shevchenko National University of Kyiv 01601 Kyiv Ukraine
| | - Olga Kapush
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine Kyiv Ukraine
| | - Svitlana Plokhovska
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine 04123 Kyiv Ukraine
| | - Anastasiya Buziashvili
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine 04123 Kyiv Ukraine
| | - Yaroslav Pirko
- Department of Population Genetics, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine Osypovskogo str., 2a Kyiv 04123 Ukraine
| | - Oleg Yeshchenko
- Physics Department, Taras Shevchenko National University of Kyiv 01601 Kyiv Ukraine
| | - Volodymyr Yukhymchuk
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine Kyiv Ukraine
| | - Alla Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine 04123 Kyiv Ukraine
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology 09107 Chemnitz Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology 09107 Chemnitz Germany
| |
Collapse
|
12
|
Wang Y, Thies-Weesie DM, Bosman ED, van Steenbergen MJ, van den Dikkenberg J, Shi Y, Lammers T, van Nostrum CF, Hennink WE. Tuning the size of all-HPMA polymeric micelles fabricated by solvent extraction. J Control Release 2022; 343:338-346. [DOI: 10.1016/j.jconrel.2022.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
|
13
|
Elbialy NS, Aboushoushah SF, Mohamed N. Bioinspired synthesis of protein/polysaccharide-decorated folate as a nanocarrier of curcumin to potentiate cancer therapy. Int J Pharm 2021; 613:121420. [PMID: 34958897 DOI: 10.1016/j.ijpharm.2021.121420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Curcumin is a promising anticancer agent, but its clinical utilization has been hindered by its low solubility and bioaccessibility. To overcome these obstacles, we developed a natural protein-polysaccharide nanocomplex made from casein nanoparticles coated with a double layer of alginate and chitosan and decorated with folic acid (fCs-Alg@CCasNPs) for use as a nanocarrier for curcumin. The developed nanoformulation showed a drug encapsulation efficiency = 75%. The measured size distribution of fCs-Alg@CCasNPs was 333.8 ± 62.35 nm with a polydispersity index (PDI) value of 0.179. The recorded zeta potential value of fCs-Alg@CCasNPs was 28.5 mV. Morphologically, fCs-Alg@CCasNPs appeared spherical, as shown by transmission electron microscopy (TEM). The successful preparation of fCs-Alg@CCasNPs was confirmed by Fourier transform infrared (FTIR) spectroscopy of all the constituents forming the nanoformulation. Further in vitro investigations indicated the stability of fCs-Alg@CCasNPs as well as their controlled and sustained release of curcumin in the tumor microenvironment. Compared with free curcumin, fCs-Alg@CCasNPs induced a higher cytotoxic effect against a pancreatic cancer cell line. The in vivo pharmacokinetics of fCs-Alg@CCasNPs showed a significant AUC0-24 = 2307 ng.h/ml compared to 461 ng.h/ml of free curcumin; these results indicated high curcumin bioavailability in plasma. The in vivo results of tumor weight, the amount of DNA damage measured by comet assay and histopathological examination revealed that treating mice with fCs-Alg@CCasNPs (either intratumorally or intraperitonially) prompted higher therapeutic efficacy against Ehrlich carcinoma than treatment with free curcumin. Therefore, the incorporation of curcumin with protein/polysaccharide/folate is an innovative approach that can synergistically enhance curcumin bioavailability and potentiate cancer therapy with considerable biosafety.
Collapse
Affiliation(s)
- Nihal S Elbialy
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Samia F Aboushoushah
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Noha Mohamed
- Associate Professor Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| |
Collapse
|
14
|
Špringer T, Krejčík Z, Homola J. Detecting attomolar concentrations of microRNA related to myelodysplastic syndromes in blood plasma using a novel sandwich assay with nanoparticle release. Biosens Bioelectron 2021; 194:113613. [PMID: 34536749 DOI: 10.1016/j.bios.2021.113613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022]
Abstract
Microribonucleic acids (miRNAs) are short noncoding ribonucleic acids that have been linked with a multitude of human diseases including lung, breast, and hematological cancers. In this work, we present a novel, extremely sensitive assay for the label-free optical biosensor-based detection of miRNAs, which is based on the oligonucleotide-triggered release of nanoparticles from a sensor surface. We combine this assay (herein referred to as the nanoparticle-release (NPR) assay) with a surface plasmon resonance biosensor and show that the assay is able to enhance the specific sensor response associated with the binding of target miRNA while suppressing the interfering effects caused by the non-specific binding. We apply the assay to the detection of miRNAs related to myelodysplastic syndromes (miR-125b, miR-16) in blood plasma and demonstrate that the assay enables detection of miR-125b with a limit of detection (LOD) of 349 aM (corresponding to the lowest detectable amounts of 419 zmol). The achieved LOD is better by a factor of ∼100 when compared to the conventional nanoparticle-enhanced sandwich assay. Moreover, we demonstrate that the NPR assay may be combined with time-division multiplexing for the multiplexed miRNA detection.
Collapse
Affiliation(s)
- Tomáš Špringer
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic
| | - Zdeněk Krejčík
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 20 Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic.
| |
Collapse
|
15
|
Mustafa F, Liebich S, Andreescu S. Nanoparticle-based amplification for sensitive detection of β-galactosidase activity in fruits. Anal Chim Acta 2021; 1186:339129. [PMID: 34756270 DOI: 10.1016/j.aca.2021.339129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Development of fast and sensitive assays for enzyme activity detection has received a great deal of attention because of the wide spread applications in measurements of numerous clinical, food and environmental processes. Herein, a novel amplification approach to enhance the sensitivity of colorimetric assays for detection of β-galactosidase (β-Gal) activity is proposed. β-Gal detection is important in biomedical applications and in food industry, where it is associated with the ripening process of fruits. The method is based on the use of multivalent cerium oxide nanoparticles (CeNPs) which catalyze the oxidation of 4-aminophenol (4-AP) produced in the hydrolysis process of the 4-aminophenyl-β-d-galactopyranoside substrate (4-APG) by β-Gal, thus enhancing detection sensitivity of β-Gal in the visible range. The developed assay is highly sensitive and easy to use. Using the optimized procedure, a limit of detection of 0.06 mU/mL was obtained with a linearity range up to 2.0 mU/mL. The feasibility of the method was demonstrated for detection of β-Gal activity in fruits and the results were compared with the conventional assay, providing over a 30-fold amplification as compared to a commercially available β-Gal protocol. The advantage of the presented assay is its biocatalytic event amplified by a secondary reaction, which enables much more sensitive detection of the enzymatic product. The sensing platform can be applied broadly to a variety of applications that rely on β-Gal activity measurements.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University, USA
| | - Steve Liebich
- Department of Chemistry and Biomolecular Science, Clarkson University, USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, USA.
| |
Collapse
|
16
|
Batool F, Iqbal MS, Khan SUD, Khan J, Ahmed B, Qadir MI. Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities. Sci Rep 2021; 11:22132. [PMID: 34764312 PMCID: PMC8586337 DOI: 10.1038/s41598-021-01374-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology is a vast field of science with the most vibrant and conspicuous applications. The green synthesis approach is cost-effective, eco-friendly, and produces the most stable metal-based nanoparticles without the use of toxic chemicals. This study presents the green synthesis of iron nanoparticles (FeNPs). For biosynthesis of FeNPs, Phoenix dactylifera extract was used as a reducing agent and iron sulfate heptahydrate (FeSO4·7H2O) was used as a substrate. FeNPs were characterized by different techniques including UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), and nano zeta-sizer analysis. The antimicrobial activity of FeNPs synthesized by using an aqueous extract of Phoenix dactylifera was evaluated against Escherichia coli, Bacillus subtilis, Micrococcus leutus, and Klebsiella pneumoniae. A notable color change from yellow to black confirmed the synthesis of FeNPs. The sharp peak at 450 nm UV-Visible spectroscopy confirmed the synthesis of FeNPs. FTIR showed the presence of O-H and C=C stretching due to the presence of phenol and alkene functional groups. The average size of FeNPs was 6092 d.nm. The results of antimicrobial activity showed that FeNPs exhibit different potential against different bacterial strains with a maximum 25 ± 0.360 zone of inhibition against Escherichia coli. Thus, green synthesized FeNPs could be used as potential antimicrobial agents.
Collapse
Affiliation(s)
- Faryal Batool
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabia
| | - Javed Khan
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
| | - Bilal Ahmed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing, People's Republic of China
| | - Muhammad Imran Qadir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
17
|
Lodhi MS, Khan MT, Aftab S, Samra ZQ, Wang H, Wei DQ. A novel formulation of theranostic nanomedicine for targeting drug delivery to gastrointestinal tract cancer. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00098-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Theranostic nanomedicines contain a nanovehicle that has fluorescent properties and can be used for diagnostic, therapeutic and prognostic purposes. The transferrin receptor expression is 1000-fold higher in rapidly growing cancer cells as compared to the normal cells and, therefore, can be used in targeted drug delivery systems. The objective of the present study was to design a novel targeted gold nanoparticle (GNPs)-based theranostic formulation for gastrointestinal (GI) tract-related cancers. The synthesized GNPs were conjugated to transferrin and doxorubicin both separately and collectively to check their cytotoxic properties. The in vitro cytotoxicity of nanocomposites was observed against colon cancer cell line HCT-116. The doxorubicin conjugated nanocomposites showed almost the same cytotoxicity, but more effect at later hours (h). The IC50 and IC100 were 50 µg/ml and 250 µg/ml, respectively, equivalent to the doxorubicin weight for GNP theranostic nanomedicine.
Results
The maximum effect was observed after 12 h and nanomedicines were still active after 72 h of treatment. Our in vivo data proved that nanomedicine crossed all the barriers and was successfully delivered to the tumour cells. Theranostic nanomedicine’s (TNM) effect on body weight and survival rate on mice was many folds better than mice in pure doxorubicin group. It also showed almost 80% survival rate on day 40. The in vivo and in vitro results show the effects of prolonged drug release and the nanomedicine was not toxic to vital organs of the animal.
Conclusion
This is one of its kind studies in which a novel targeted nanomedicines approach was formulated for therapeutic as well as prognostic purposes against GI tract cancer.
Graphic Abstract
Collapse
|
18
|
Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021; 26:5823. [PMID: 34641367 PMCID: PMC8510367 DOI: 10.3390/molecules26195823] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust-Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical-physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure-activity correlation in the frame of their applications in the biomedical and biotechnology sectors.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Angela Castellano
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Maurilio Galletta
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Dario Drommi
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| |
Collapse
|
19
|
Ramirez LMF, Rihouey C, Chaubet F, Le Cerf D, Picton L. Characterization of dextran particle size: How frit-inlet asymmetrical flow field-flow fractionation (FI-AF4) coupled online with dynamic light scattering (DLS) leads to enhanced size distribution. J Chromatogr A 2021; 1653:462404. [PMID: 34348206 DOI: 10.1016/j.chroma.2021.462404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/18/2023]
Abstract
Accurate determinations of particle size and particle size distribution (PSD) are essential to achieve the clinical translation of medical nanoparticles (NPs). Herein, dextran-based NPs produced via a water-in-oil emulsification/crosslinking process and developed as nanomedicines were studied. NPs were first characterized using traditional batch-mode techniques as dynamic light scattering (DLS) and laser diffraction. In a second step, their analysis by frit-inlet asymmetrical flow field-flow fractionation (FI-AF4) was explored. The major parameters of the AF4 procedure, namely, crossflow, detector flow, crossflow decay programming and relaxation time were set up. The sizes of the particle fractions eluted under optimized conditions were measured using DLS as an online detector. We demonstrate that FI-AF4 is a powerful method to characterize dextran-NPs in the 200 nm -1 µm range. It provided a more realistic and comprehensive picture of PSD, revealing its heterogenous character and clearly showing the ratio of different populations in the sample, while batch-mode light scattering techniques only detected the biggest particle sizes.
Collapse
Affiliation(s)
- Laura Marcela Forero Ramirez
- Laboratory for Vascular Translational Science, UMRS1148, INSERM, Université de Paris, Paris F-75018, France; Université Sorbonne Paris Nord, Villetaneuse F-93430, France; Normandie University, UNIROUEN, National Institute of Applied Sciences of Rouen, CNRS, PBS, UMR6270, Rouen 76000, France
| | - Christophe Rihouey
- Normandie University, UNIROUEN, National Institute of Applied Sciences of Rouen, CNRS, PBS, UMR6270, Rouen 76000, France
| | - Frédéric Chaubet
- Laboratory for Vascular Translational Science, UMRS1148, INSERM, Université de Paris, Paris F-75018, France; Université Sorbonne Paris Nord, Villetaneuse F-93430, France
| | - Didier Le Cerf
- Normandie University, UNIROUEN, National Institute of Applied Sciences of Rouen, CNRS, PBS, UMR6270, Rouen 76000, France
| | - Luc Picton
- Normandie University, UNIROUEN, National Institute of Applied Sciences of Rouen, CNRS, PBS, UMR6270, Rouen 76000, France.
| |
Collapse
|
20
|
Koushki E. Effect of conjugation with organic molecules on the surface plasmon resonance of gold nanoparticles and application in optical biosensing. RSC Adv 2021; 11:23390-23399. [PMID: 35479782 PMCID: PMC9036560 DOI: 10.1039/d1ra01842f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/27/2021] [Indexed: 12/14/2022] Open
Abstract
The problem of functionalizing and coating nanoparticles with surfactants dispersed in a colloid is a prevalent case in nanoscience and related studies. It is known that surfactants could easily cause a shift in the absorption peak in metallic nanoparticles (NPs). Here, a precise theoretical model is presented to simulate the ultraviolet-visible (UV-vis) absorption spectrum of a colloid containing gold nanoparticles (Au NPs) in the presence of different surfactants. Based on the Lorentz-Drude model, this model is able to justify the fact that surfactants with a higher refractive index lead to movement of the absorption peak toward longer wavelengths (red shift). Also, relative concentrations of agents in a solvent can be analyzed using this model. The presented descriptive model illustrates gold-based biosensors with a physical point of view that leads to an increase in their efficiency. Several experimental cases are considered and are examined to calculate and compare the refractive index of the surfactants. In accordance with the results, it is found that this model is compatible with a wide range of molecular sizes, and here, the model is applied for a typical size range of micromolecules such as citrate ions to macromolecules such as polyethylene glycol (PEG) as a polyether. The suggested method revealed that it is appropriate for different surfactants with various chemical structures and refractive indexes. Utilization of approximations in this theoretical model is limited, thus, a method with the least deviation from real measurements has been introduced. The applicability of this model can be extended to practical purposes, including optical bio-sensors and detectors of organic and biological moieties such as viruses and antibodies.
Collapse
Affiliation(s)
- Ehsan Koushki
- Department of Physics, Hakim Sabzevari University Sabzevar 96179-76487 Iran
| |
Collapse
|
21
|
Weiss VU, Denderz N, Allmaier G, Marchetti‐Deschmann M. Online hyphenation of size-exclusion chromatography and gas-phase electrophoresis facilitates the characterization of protein aggregates. Electrophoresis 2021; 42:1202-1208. [PMID: 33651392 PMCID: PMC8252587 DOI: 10.1002/elps.202100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 11/07/2022]
Abstract
Gas-phase electrophoresis yields size distributions of polydisperse, aerosolized analytes based on electrophoretic principles. Nanometer-sized, surface-dry, single-charged particles are separated in a high laminar sheath flow of particle-free air and an orthogonal tunable electric field. Additionally, nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) data are particle-number based. Therefore, small particles can be detected next to larger ones without a bias, for example, native proteins next to their aggregates. Analyte transition from the liquid to the gas phase is a method inherent prerequisite. In this context, nonvolatile sample buffers influence results. In the worst case, the (bio-)nanoparticle signal is lost due to an increased baseline and unspecific clustering of nonvolatile components. We present a novel online hyphenation of liquid chromatography and gas-phase electrophoresis, coupling a size-exclusion chromatography (SEC) column to an advanced nES GEMMA. Via this novel approach, it is possible to (i) separate analyte multimers already present in liquid phase from aggregates formed during the nES process, (ii) differentiate liquid phase and spray-induced multimers, and (iii) to remove nonvolatile buffer components online before SEC-nES GEMMA analysis. Due to these findings, SEC-nES GEMMA has the high potential to help to understand aggregation processes in biological buffers adding the benefit of actual size determination for noncovalent assemblies formed in solution. As detection and characterization of protein aggregation in large-scale pharmaceutical production or sizing of noncovalently bound proteins are findings directly related to technologically and biologically relevant situations, we proposed the presented method to be a valuable addition to LC-MS approaches.
Collapse
Affiliation(s)
- Victor U. Weiss
- Institute for Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | - Natalia Denderz
- Institute for Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | - Günter Allmaier
- Institute for Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | | |
Collapse
|
22
|
Liu L, Koushki E, Tayebee R. Surface modification of gold nanoparticles by cetirizine through surface plasmon resonance and preliminary study of the in vitro cellular cytotoxicity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Simple Equations Pertaining to the Particle Number and Surface Area of Metallic, Polymeric, Lipidic and Vesicular Nanocarriers. Sci Pharm 2021. [DOI: 10.3390/scipharm89020015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Bioactive encapsulation and drug delivery systems have already found their way to the market as efficient therapeutics to combat infections, viral diseases and different types of cancer. The fields of food fortification, nutraceutical supplementation and cosmeceuticals have also been getting the benefit of encapsulation technologies. Aim: Successful formulation of such therapeutic and nutraceutical compounds requires thorough analysis and assessment of certain characteristics including particle number and surface area without the need to employ sophisticated analytical techniques. Solution: Here we present simple mathematical formulas and equations used in the research and development of drug delivery and controlled release systems employed for bioactive encapsulation and targeting the sites of infection and cancer in vitro and in vivo. Systems covered in this entry include lipidic vesicles, polymeric capsules, metallic particles as well as surfactant- and tocopherol-based micro- and nanocarriers.
Collapse
|
24
|
Casula L, Sinico C, Valenti D, Pini E, Pireddu R, Schlich M, Lai F, Maria Fadda A. Delivery of beclomethasone dipropionate nanosuspensions with an electronic cigarette. Int J Pharm 2021; 596:120293. [PMID: 33497704 DOI: 10.1016/j.ijpharm.2021.120293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 01/14/2023]
Abstract
The aim of this work was to ascertain the ability of electronic nicotine delivery systems (ENDS) to deliver drug nanocrystals through the produced aerosol. A nanocrystal nanosuspension of beclomethasone dipropionate, a synthetic chlorinated corticosteroid diester commonly used by inhalation in the treatment of asthma and chronic obstructive pulmonary disease, was prepared with a wet media milling technique using Poloxamer 188 as stabilizer. The obtained nanosuspension was thoroughly characterized by different techniques: transmission electron microscopy, photon correlation spectroscopy, X-ray powder diffractometry and Fourier transform infrared spectroscopy. The nanosuspension was then loaded in the cartomizer of the electronic cigarette and the produced aerosol was collected and analysed, confirming the presence of drug nanocrystals. The results of this study suggested the possible alternative use of ENDS as medical device for the delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Luca Casula
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| | - Chiara Sinico
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| | - Donatella Valenti
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| | - Elena Pini
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, Milano 20133, Italy
| | - Rosa Pireddu
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| | - Michele Schlich
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy; Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesco Lai
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy.
| | - Anna Maria Fadda
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| |
Collapse
|
25
|
Alabresm A, Decho AW, Lead J. A novel method to estimate cellular internalization of nanoparticles into gram-negative bacteria: Non-lytic removal of outer membrane and cell wall. NANOIMPACT 2021; 21:100283. [PMID: 35559775 DOI: 10.1016/j.impact.2020.100283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/15/2023]
Abstract
Bacteria efficiently take up small organic molecules and ions. However, the internalization of particulate forms, specifically nanoparticles (NPs) has been understudied and is a newly-emerging area of interest. However, determination of true cellular internalization is challenging owing to the difficulty of separating the aqueous phase from bacteria-associated NPs and, more importantly, of differentiating between internalized and NPs sorbed on bacteria surfaces. In this work, we developed and validated an extraction method which can operationally estimate internalization of metal NPs into Gram-negative bacteria. The outer cell membrane and cell wall, collectively called the periplasm, was successfully removed from bacteria using ethylenediaminetetraacetic acid (EDTA) at an optimized exposure period and concentration, without lysis of bacteria. This was followed by standard digestion and metal measurements. Verification of each step of the methodology was conducted by assessing both cellular and metal behavior. Specifically, the combined approaches of live/dead staining of bacteria, optical density measurements, transmission electron microscopy (TEM) and metal analyses of the supernatant indicated that the method operationally separated externally-sorbed NPs from those internalized actually localized within the bacterial cytoplasm. However, this new method is ideally used alongside other methods in a multi-method approach, to provide improved data quality. Therefore, it should be used with CSLM, FACS, TEM and other available methods.
Collapse
Affiliation(s)
- Amjed Alabresm
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq
| | - Alan W Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Jamie Lead
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
26
|
Huang T, Holden JA, Reynolds EC, Heath DE, O'Brien-Simpson NM, O'Connor AJ. Multifunctional Antimicrobial Polypeptide-Selenium Nanoparticles Combat Drug-Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55696-55709. [PMID: 33249831 DOI: 10.1021/acsami.0c17550] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antibiotic-resistant bacteria are a severe threat to human health. The World Health Organization's Global Antimicrobial Surveillance System has revealed widespread occurrence of antibiotic resistance among half a million patients across 22 countries, with Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae being the most common resistant species. Antimicrobial nanoparticles are emerging as a promising alternative to antibiotics in the fight against antimicrobial resistance. In this work, selenium nanoparticles coated with the antimicrobial polypeptide, ε-poly-l-lysine, (Se NP-ε-PL) were synthesized and their antibacterial activity and cytotoxicity were investigated. Se NP-ε-PL exhibited significantly greater antibacterial activity against all eight bacterial species tested, including Gram-positive, Gram-negative, and drug-resistant strains, than their individual components, Se NP and ε-PL. The nanoparticles showed no toxicity toward human dermal fibroblasts at the minimum inhibitory concentrations, demonstrating a therapeutic window. Furthermore, unlike the conventional antibiotic kanamycin, Se NP-ε-PL did not readily induce resistance in E. coli or S. aureus. Specifically, S. aureus began to develop resistance to kanamycin from ∼44 generations, whereas it took ∼132 generations for resistance to develop to Se NP-ε-PL. Startlingly, E. coli was not able to develop resistance to the nanoparticles over ∼300 generations. These results indicate that the multifunctional approach of combining Se NP with ε-PL to form Se NP-ε-PL is a highly efficacious new strategy with wide-spectrum antibacterial activity, low cytotoxicity, and significant delays in development of resistance.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - James A Holden
- Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Eric C Reynolds
- Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
27
|
Sun Y, Liu N, Wang Y, Yin Y, Qu G, Shi J, Song M, Hu L, He B, Liu G, Cai Y, Liang Y, Jiang G. Monitoring AuNP Dynamics in the Blood of a Single Mouse Using Single Particle Inductively Coupled Plasma Mass Spectrometry with an Ultralow-Volume High-Efficiency Introduction System. Anal Chem 2020; 92:14872-14877. [PMID: 32972134 DOI: 10.1021/acs.analchem.0c02285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold nanoparticles (AuNPs) are increasingly being used as diagnostic and therapeutic agents owing to their excellent properties; however, there is not much data available on their dynamics in vivo on a single particle basis in a single mouse. Here, we developed a method for the direct analysis of nanoparticles in trace blood samples based on single particle inductively coupled plasma-mass spectrometry (spICP-MS). A flexible, highly configurable, and precisely controlled sample introduction system was designed by assembling an ultralow-volume autosampler (flow rate in the range of 5-5000 μL/min) and a customized cyclonic spray chamber (transfer efficiency up to 99%). Upon systematic optimization, the detection limit of the nanoparticle size (LODsize) of AuNPs in ultrapure water was 19 nm, and the detection limit of the nanoparticle number concentration (LODNP) was 8 × 104 particle/L. Using a retro-orbital blood sampling method and subsequent dilution, the system was successfully applied to track the dynamic changes in size and concentration for AuNPs in the blood of a single mouse, and the recovery for the blood sample was 111.74%. Furthermore, the concentration of AuNPs in mouse blood reached a peak in a short period of time and, then, gradually decreased. This study provides a promising technique for analyzing and monitoring the size and concentration of nanoparticles in ultralow-volume blood samples with low concentrations, making it a powerful tool for analyzing and understanding the fate of nanoparticles in vivo.
Collapse
Affiliation(s)
- Yuzhen Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.,Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, Hubei 430056, China.,Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430000, P. R. China
| | - Nian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.,Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430000, P. R. China.,School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310000, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, Hubei 430056, China.,Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430000, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
28
|
Aqueous Dilution of Noble NPs Bulk Dispersions: Modeling Instability due to Dissolution by AF4 and Stablishing Considerations for Plasmonic Assays. NANOMATERIALS 2020; 10:nano10091802. [PMID: 32927649 PMCID: PMC7560132 DOI: 10.3390/nano10091802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Among different nanomaterials, gold and silver nanoparticles (AuNPs and AgNPs) have become useful tools for a wide variety of applications in general, and particularly for plasmonic assays. Particle size and stability analysis are key elements for their practical applications since the NPs properties depend on these parameters. Hence, in the present work, asymmetrical flow field flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series, has been evaluated for stability studies of citrate-capped AuNPs and AgNPs aqueous dispersions. First, experimental parameters, such as mobile phase or cross-flow rate were optimized. Sodium azide to pH 7 for AuNPs and pH 9.2 for AgNPs were selected as the optimum mobile phase. The analytical response of bulk dispersions of AuNPs (20, 40, 60 and 80 nm) and AgNPs (20, 40 and 60 nm) and their dilutions have been studied. Fractograms showed a decrease on the absorbance signal in diluted dispersions as a function of time and particle size for the diluted dispersions that can be explained by dissolution in diluted dispersion since hydrodynamic diameter was constant. The results indicated that the dependence of the signal with time was more intense for AgNPs than for AuNPs, which can be correlated with its lower stability. These findings should be considered when plasmonic assays are realized. Here, assays involving non-oxidant acidic acids as use cases, were tested for several batches of NPs and considerations about their stability and operability stablished.
Collapse
|
29
|
Huang T, Kumari S, Herold H, Bargel H, Aigner TB, Heath DE, O’Brien-Simpson NM, O’Connor AJ, Scheibel T. Enhanced Antibacterial Activity of Se Nanoparticles Upon Coating with Recombinant Spider Silk Protein eADF4(κ16). Int J Nanomedicine 2020; 15:4275-4288. [PMID: 32606677 PMCID: PMC7306472 DOI: 10.2147/ijn.s255833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Selenium nanoparticles (Se NPs) are promising antibacterial agents to tackle the growing problem of antimicrobial resistance. The aim of this study was to fabricate Se NPs with a net positive charge to enhance their antibacterial efficacy. METHODS Se NPs were coated with a positively charged protein - recombinant spider silk protein eADF4(κ16) - to give them a net positive surface charge. Their cytotoxicity and antibacterial activity were investigated, with negatively charged polyvinyl alcohol coated Se NPs as a control. Besides, these eADF4(κ16)-coated Se NPs were immobilized on the spider silk films, and the antibacterial activity of these films was investigated. RESULTS Compared to the negatively charged polyvinyl alcohol coated Se NPs, the positively charged eADF4(κ16)-coated Se NPs demonstrated a much higher bactericidal efficacy against the Gram-negative bacteria E. coli, with a minimum bactericidal concentration (MBC) approximately 50 times lower than that of negatively charged Se NPs. Cytotoxicity testing showed that the eADF4(κ16)-coated Se NPs are safe to both Balb/3T3 mouse embryo fibroblasts and HaCaT human skin keratinocytes up to 31 µg/mL, which is much higher than the MBC of these particles against E. coli (8 ± 1 µg/mL). In addition, antibacterial coatings were created by immobilising the eADF4(κ16)-coated Se NPs on positively charged spider silk films and these were shown to retain good bactericidal efficacy and overcome the issue of low particle stability in culture broth. It was found that these Se NPs needed to be released from the film surface in order to exert their antibacterial effects and this release can be regulated by the surface charge of the film, such as the change of the spider silk protein used. CONCLUSION Overall, eADF4(κ16)-coated Se NPs are promising new antibacterial agents against life-threatening bacteria.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC3010, Australia
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger Bormann Str. 1, Bayreuth95447, Germany
| | - Sushma Kumari
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger Bormann Str. 1, Bayreuth95447, Germany
| | - Heike Herold
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger Bormann Str. 1, Bayreuth95447, Germany
| | - Hendrik Bargel
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger Bormann Str. 1, Bayreuth95447, Germany
| | - Tamara B Aigner
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger Bormann Str. 1, Bayreuth95447, Germany
| | - Daniel E Heath
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC3010, Australia
| | - Neil M O’Brien-Simpson
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC3010, Australia
| | - Andrea J O’Connor
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC3010, Australia
| | - Thomas Scheibel
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger Bormann Str. 1, Bayreuth95447, Germany
- Bavarian Polymer Institute (BPI), Bayreuth Center for Material Science and Engineering (BayMAT), Bayreuth Center for Colloids and Interfaces (BZKG), Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth95447, Germany
| |
Collapse
|
30
|
Weiss VU, Frank J, Piplits K, Szymanski WW, Allmaier G. Bipolar Corona Discharge-Based Charge Equilibration for Nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analysis of Bio- and Polymer Nanoparticles. Anal Chem 2020; 92:8665-8669. [PMID: 32519840 PMCID: PMC7467421 DOI: 10.1021/acs.analchem.0c01904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
Separation
of polydisperse, single-charged analytes in the nanometer
size range in a high laminar sheath flow of particle-free ambient
air and a tunable electric field based on the respective particle
electrophoretic mobility diameter (EMD) can be achieved via gas-phase
electrophoresis. In order to transfer analytes from a volatile electrolyte
solution to the gas-phase as a single-charged species, a nano electrospray
(nES) process followed by drying of nanodroplets and charge conditioning
reaching Boltzmann charge equilibrium is a necessary prerequisite.
In the case of a so-called nES gas-phase electrophoretic mobility
molecular analyzer (nES GEMMA, also known as nES differential mobility
analyzer, nES DMA), charge equilibration is based on bionanoparticle
interaction with a bipolar atmosphere induced, e.g., by a radioactive
α-particle emitter like 210Po. It was the aim of
our investigation to examine whether such a radioactive source can
be easily replaced in the same nES housing by a nonradioactive one,
i.e., by an AC corona discharge unit. The latter would be significantly
easier to handle when compared to radioactive material in laboratory
day-to-day business, waste disposal, as well as regulatory confinements.
Indeed, we were able to combine a standard nES unit of our nES GEMMA
instrument with a commercially available AC corona discharge device
in a novel setup via an adapter. Our results show that this replacement
yields very good results for a number of chemically different nanoparticles,
an exemplary protein, a noncovalent protein complex, a virus-like
particle, a polymer, and a liposome sample, when compared to a 210Po based bipolar charge equilibration device.
Collapse
Affiliation(s)
- Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| | - Johannes Frank
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| | - Kurt Piplits
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| | | | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| |
Collapse
|
31
|
|
32
|
Koushki E, Mirzaei Mohammadabadi F, Baedi J, Ghasedi A. The effects of glucose and glucose oxidase on the Uv-vis spectrum of gold nanoparticles: A study on optical biosensor for saliva glucose monitoring. Photodiagnosis Photodyn Ther 2020; 30:101771. [PMID: 32311543 DOI: 10.1016/j.pdpdt.2020.101771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 11/30/2022]
Abstract
In this study we have investigated the effect of glucose and glucose oxidase (GOD) on the absorption spectrum of gold nanoparticles (Au NPs) with 10-13 nm diameter, in order to improve optical methods of glucose monitoring using surface plasmon resonance of these particles. Different concentrations of glucose solution in water were prepared in the range of human saliva intensity. Two procedures are applied to study glucose effects on the particles; mixing the glucose to the nanocolloid and then adding the GOD, and reversely mixing the glucose and GOD solutions and then pouring in to the nanocolloid. Two different results were obtained that are analyzed based on optical properties. In each method, the effect of glucose and GOD on the size and Uv-vis spectrum of gold nanoparticles has been investigated. Results were interpreted by the physical concept of surface Plasmon resonance (SPR) of Au NPs. This study can open new insight about optical glucose sensing based on surface plasmon of metal nanoparticles.
Collapse
Affiliation(s)
- Ehsan Koushki
- Department of Physics, School of Sciences, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran.
| | | | - Javad Baedi
- Department of Physics, School of Sciences, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran
| | - Arman Ghasedi
- Department of Physics, School of Sciences, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran
| |
Collapse
|
33
|
Nano electrospray differential mobility analysis based size-selection of liposomes and very-low density lipoprotein particles for offline hyphenation to MALDI mass spectrometry. J Pharm Biomed Anal 2020; 179:112998. [PMID: 31780280 DOI: 10.1016/j.jpba.2019.112998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022]
Abstract
Gas-phase electrophoresis of single-charged analytes (nanoparticles) enables their separation according to the surface-dry particle size (Electrophoretic Mobility Diameter, EMD), which corresponds to the diameter of spherical shaped particles. Employing a nano Electrospray Differential Mobility Analyzer (nES DMA), also known as nES Gas-phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA), allows sizing/size-separation and determination of particle-number concentrations. Separations are based on a constant high laminar sheath flow and a tunable, orthogonal electric field enabling scanning of EMDs in the nanometer size range. Additionally, keeping the voltage constant, only nanoparticles of a given EMD pass the instrument and can be collected on corresponding supporting materials for subsequent nanoparticle analyses applying e.g. microscopic, immunologic or spectroscopic techniques. In our proof-of-concept study we now focus for the first time on mass spectrometric (MS) characterization of DMA size-selected material. We carried out size-selection of liposomes, vesicles consisting of a lipid bilayer and an aqueous lumen employed as carriers in e.g. pharmaceutic, cosmetic or nutritional applications. Particles of 85 nm EMD were collected on gold-coated silicon wafers. Subsequently, matrix was applied and Matrix-Assisted Laser Desorption / Ionization (MALDI) MS carried out. However, we not only focused on plain liposomes but also demonstrated the applicability of our approach for very heterogeneous low density lipoprotein (VLDL) particles, a transporter of lipid metabolism. Our novel offline hyphenation of gas-phase electrophoresis (termed nES DMA or nES GEMMA) and MALDI-MS opens the avenue to the molecular characterization of size-select nanoparticles of complex nature.
Collapse
|
34
|
Baranowska-Korczyc A, Mackiewicz E, Ranoszek-Soliwoda K, Grobelny J, Celichowski G. Facile synthesis of SnO 2shell followed by microwave treatment for high environmental stability of Ag nanoparticles. RSC Adv 2020; 10:38424-38436. [PMID: 35517546 PMCID: PMC9057269 DOI: 10.1039/d0ra06159j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/01/2020] [Indexed: 11/21/2022] Open
Abstract
This study describes a new method for passivating Ag nanoparticles (AgNPs) with SnO2 layer and their further treatment by microwave irradiation. The one-step process of SnO2 layer formation was carried out by adding sodium stannate to the boiling aqueous AgNPs solution, which resulted in the formation of core@shell Ag@SnO2 nanoparticles. The coating formation was a tunable process, making it possible to obtain an SnO2 layer thickness in the range from 2 to 13 nm. The morphology, size, zeta-potential, and optical properties of the Ag@SnO2NPs were studied. The microwave irradiation significantly improved the environmental resistance of Ag@SnO2NPs, which remained stable in different biological solutions such as NaCl at 150 mM and 0.1 M, Tris-buffered saline buffer at 0.1 M, and phosphate buffer at pH 5.6, 7.0, and 8.0. Ag@SnO2NPs after microwave irradiation were also stable at biologically relevant pH values, both highly acidic (1.4) and alkaline (13.2). Moreover, AgNPs covered with a 13 nm-thick SnO2 layer were resistant to cyanide up to 0.1 wt%. The microwave-treated SnO2 shell can facilitate the introduction of AgNPs in various solutions and extend their potential application in biological environments by protecting the metal nanostructures from dissolution and aggregation. This study describes a new method for passivating Ag nanoparticles (AgNPs) with SnO2 layer and their further treatment by microwave irradiation.![]()
Collapse
Affiliation(s)
- Anna Baranowska-Korczyc
- Faculty of Chemistry
- Department of Materials Technology and Chemistry
- The University of Łódź
- Łódź 90-236
- Poland
| | - Ewelina Mackiewicz
- Faculty of Chemistry
- Department of Materials Technology and Chemistry
- The University of Łódź
- Łódź 90-236
- Poland
| | | | - Jarosław Grobelny
- Faculty of Chemistry
- Department of Materials Technology and Chemistry
- The University of Łódź
- Łódź 90-236
- Poland
| | - Grzegorz Celichowski
- Faculty of Chemistry
- Department of Materials Technology and Chemistry
- The University of Łódź
- Łódź 90-236
- Poland
| |
Collapse
|
35
|
Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf B Biointerfaces 2019; 183:110455. [DOI: 10.1016/j.colsurfb.2019.110455] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 01/25/2023]
|
36
|
Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123644] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Huang T, Holden JA, Heath DE, O'Brien-Simpson NM, O'Connor AJ. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. NANOSCALE 2019; 11:14937-14951. [PMID: 31363721 DOI: 10.1039/c9nr04424h] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The overuse of antibiotics has induced the rapid development of antibiotic resistance in bacteria. As a result, antibiotic efficacy has become limited, and infection with multidrug-resistant bacteria is considered to be one of the largest global human health threats. Consequently, new, effective and safe antimicrobial agents need to be developed urgently. One promising candidate to address this requirement is selenium nanoparticles (Se NPs), which are made from the essential dietary trace element Se and have antimicrobial activity against Gram-positive bacteria. The size of nanomaterials can strongly affect their biophysical properties and functions; however, the effects of the size of Se NPs on their antibacterial efficacy has not been systematically investigated. Therefore, in this work, spherical Se NPs ranging from 43 to 205 nm in diameter were fabricated, and their mammalian cytotoxicity and antibacterial activity as a function of their size were systematically studied. The antibacterial activity of the Se NPs was shown to be strongly size dependent, with 81 nm Se NPs showing the maximal growth inhibition and killing effect of methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MSSA and MRSA). The Se NPs were shown to have multi-modal mechanisms of action that depended on their size, including depleting internal ATP, inducing ROS production, and disrupting membrane potential. All the Se NPs were non-toxic towards mammalian cells up to 25 μg mL-1. Furthermore, the MIC value for the 81 nm particles produced in this research is 16 ± 7 μg mL-1, significantly lower than previously reported MIC values for Se NPs. This data illustrates that Se NP size is a facile yet critical and previously underappreciated parameter that can be tailored for maximal antimicrobial efficacy. We have identified that using Se NPs with a size of 81 nm and concentration of 10 μg mL-1 shows promise as a safe and efficient way to kill S. aureus without damaging mammalian cells.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | | | |
Collapse
|
38
|
Weiss VU, Pogan R, Zoratto S, Bond KM, Boulanger P, Jarrold MF, Lyktey N, Pahl D, Puffler N, Schelhaas M, Selivanovitch E, Uetrecht C, Allmaier G. Virus-like particle size and molecular weight/mass determination applying gas-phase electrophoresis (native nES GEMMA). Anal Bioanal Chem 2019; 411:5951-5962. [PMID: 31280479 PMCID: PMC6706367 DOI: 10.1007/s00216-019-01998-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 02/04/2023]
Abstract
(Bio-)nanoparticle analysis employing a nano-electrospray gas-phase electrophoretic mobility molecular analyzer (native nES GEMMA) also known as nES differential mobility analyzer (nES DMA) is based on surface-dry analyte separation at ambient pressure. Based on electrophoretic principles, single-charged nanoparticles are separated according to their electrophoretic mobility diameter (EMD) corresponding to the particle size for spherical analytes. Subsequently, it is possible to correlate the (bio-)nanoparticle EMDs to their molecular weight (MW) yielding a corresponding fitted curve for an investigated analyte class. Based on such a correlation, (bio-)nanoparticle MW determination via its EMD within one analyte class is possible. Turning our attention to icosahedral, non-enveloped virus-like particles (VLPs), proteinaceous shells, we set up an EMD/MW correlation. We employed native electrospray ionization mass spectrometry (native ESI MS) to obtain MW values of investigated analytes, where possible, after extensive purification. We experienced difficulties in native ESI MS with time-of-flight (ToF) detection to determine MW due to sample inherent characteristics, which was not the case for charge detection (CDMS). nES GEMMA exceeds CDMS in speed of analysis and is likewise less dependent on sample purity and homogeneity. Hence, gas-phase electrophoresis yields calculated MW values in good approximation even when charge resolution was not obtained in native ESI ToF MS. Therefore, both methods-native nES GEMMA-based MW determination via an analyte class inherent EMD/MW correlation and native ESI MS-in the end relate (bio-)nanoparticle MW values. However, they differ significantly in, e.g., ease of instrument operation, sample and analyte handling, or costs of instrumentation. Graphical abstract ![]()
Collapse
Affiliation(s)
- Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria.
| | - Ronja Pogan
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251, Hamburg, Germany.,European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Samuele Zoratto
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Kevin M Bond
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405, USA
| | - Pascale Boulanger
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405, USA
| | - Nicholas Lyktey
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405, USA
| | - Dominik Pahl
- Institute of Cellular Virology, WWU Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Nicole Puffler
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Mario Schelhaas
- Institute of Cellular Virology, WWU Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Ekaterina Selivanovitch
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405, USA
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251, Hamburg, Germany.,European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria
| |
Collapse
|
39
|
Liu S, Lämmerhofer M. Functionalized gold nanoparticles for sample preparation: A review. Electrophoresis 2019; 40:2438-2461. [PMID: 31056767 DOI: 10.1002/elps.201900111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Sample preparation is a crucial step for the reliable and accurate analysis of both small molecule and biopolymers which often involves processes such as isolation, pre-concentration, removal of interferences (purification), and pre-processing (e.g., enzymatic digestion) of targets from a complex matrix. Gold nanoparticle (GNP)-assisted sample preparation and pre-concentration has been extensively applied in many analytical procedures in recent years due to the favorable and unique properties of GNPs such as size-controlled synthesis, large surface-to-volume ratio, surface inertness, straightforward surface modification, easy separation requiring minimal manipulation of samples. This review article primarily focuses on applications of GNPs in sample preparation, in particular for bioaffinity capture and biocatalysis. In addition, their most common synthesis, surface modification and characterization methods are briefly summarized. Proper surface modification for GNPs designed in accordance to their target application directly influence their functionalities, e.g., extraction efficiencies, and catalytic efficiencies. Characterization of GNPs after synthesis and modification is worthwhile for monitoring and controlling the fabrication process to ensure proper quality and functionality. Parameters such as morphology, colloidal stability, and physical/chemical properties can be assessed by methods such as surface plasmon resonance, dynamic light scattering, ζ-potential determinations, transmission electron microscopy, Taylor dispersion analysis, and resonant mass measurement, among others. The accurate determination of the surface coverage appears to be also mandatory for the quality control of functionality of the nanoparticles. Some promising applications of (functionalized) GNPs for bioanalysis and sample preparation are described herein.
Collapse
Affiliation(s)
- Siyao Liu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Liu S, Haller E, Horak J, Brandstetter M, Heuser T, Lämmerhofer M. Protein A- and Protein G-gold nanoparticle bioconjugates as nano-immunoaffinity platform for human IgG depletion in plasma and antibody extraction from cell culture supernatant. Talanta 2019; 194:664-672. [DOI: 10.1016/j.talanta.2018.10.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
|
41
|
Weiss VU, Wieland K, Schwaighofer A, Lendl B, Allmaier G. Native Nano-electrospray Differential Mobility Analyzer (nES GEMMA) Enables Size Selection of Liposomal Nanocarriers Combined with Subsequent Direct Spectroscopic Analysis. Anal Chem 2019; 91:3860-3868. [PMID: 30735037 PMCID: PMC6427476 DOI: 10.1021/acs.analchem.8b04252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Gas-phase
electrophoresis employing a nano-electrospray differential
mobility analyzer (nES DMA), aka gas-phase electrophoretic mobility
molecular analyzer (nES GEMMA), enables nanoparticle separation in
the gas-phase according to their surface-dry diameter with number-based
concentration detection. Moreover, particles in the nanometer
size range can be collected after size selection on supporting materials.
It has been shown by subsequent analyses employing orthogonal methods,
for instance, microscopic or antibody-based techniques, that the surface
integrity of collected analytes remains intact. Additionally, native
nES GEMMA demonstrated its applicability for liposome characterization.
Liposomes are nanometer-sized, biodegradable, and rather labile carriers
(nanoobjects) consisting of a lipid bilayer encapsulating an aqueous
lumen. In nutritional and pharmaceutical applications, these vesicles
allow shielded, targeted transport and sustained release of bioactive
cargo material. To date, cargo quantification is based on bulk measurements
after bilayer rupture. In this context, we now compare capillary electrophoresis
and spectroscopic characterization of vesicles in solution (bulk measurements)
to the possibility of spectroscopic investigation of individual, size-separated/collected
liposomes after nES GEMMA. Surface-dried, size-selected vesicles were
collected intact on calcium fluoride (CaF2) substrates
and zinc selenide (ZnSe) prisms, respectively, for subsequent spectroscopic
investigation. Our proof-of-principle study demonstrates that the
off-line hyphenation of gas-phase electrophoresis and confocal Raman
spectroscopy allows detection of isolated, nanometer-sized soft material/objects.
Additionally, atomic force microscopy-infrared spectroscopy (AFM-IR)
as an advanced spectroscopic system was employed to access molecule-specific
information with nanoscale lateral resolution. The off-line hyphenation
of nES GEMMA and AFM-IR is introduced to enable chemical imaging of
single, i.e., individual, liposome particles.
Collapse
Affiliation(s)
- Victor U Weiss
- Institute of Chemical Technologies and Analytics , Vienna University of Technology (TU Wien) , A-1060 Vienna , Austria
| | - Karin Wieland
- Institute of Chemical Technologies and Analytics , Vienna University of Technology (TU Wien) , A-1060 Vienna , Austria
| | - Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics , Vienna University of Technology (TU Wien) , A-1060 Vienna , Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics , Vienna University of Technology (TU Wien) , A-1060 Vienna , Austria
| | - Guenter Allmaier
- Institute of Chemical Technologies and Analytics , Vienna University of Technology (TU Wien) , A-1060 Vienna , Austria
| |
Collapse
|
42
|
Vedhanayagam M, Nair BU, Sreeram KJ. Effect of functionalized gold nanoparticle on collagen stabilization for tissue engineering application. Int J Biol Macromol 2019; 123:1211-1220. [DOI: 10.1016/j.ijbiomac.2018.11.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/25/2018] [Accepted: 11/18/2018] [Indexed: 02/07/2023]
|
43
|
Hoffmann S, Gorzelanny C, Moerschbacher B, Goycoolea FM. Physicochemical Characterization of FRET-Labelled Chitosan Nanocapsules and Model Degradation Studies. NANOMATERIALS 2018; 8:nano8100846. [PMID: 30336593 PMCID: PMC6215305 DOI: 10.3390/nano8100846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Sub-micron o/w emulsions coated with chitosan have been used for drug delivery, quorum sensing inhibition, and vaccine development. To study interactions with biological systems, nanocapsules have been fluorescently labelled in previous works, but it is often difficult to distinguish the released label from intact nanocapsules. In this study, we present advanced-labelling strategies based on Förster Resonance Energy Transfer (FRET) measurements for chitosan-coated nanocapsules and investigate their dissolution and degradation. We used FRET measurements of nanocapsules loaded with equimolar concentrations of two fluorescent dyes in their oily core and correlated them with dynamic light scattering (DLS) count rate measurement and absorbance measurements during their disintegration by dissolution. Using count rate measurements, we also investigated the enzymatic degradation of nanocapsules using pancreatin and how protein corona formation influences their degradation. Of note, nanocapsules dissolved in ethanol, while FRET decreased simultaneously with count rate, and absorbance was caused by nanocapsule turbidity, indicating increased distance between dye molecules after their release. Nanocapsules were degradable by pancreatin in a dose-dependent manner, and showed a delayed enzymatic degradation after protein corona formation. We present here novel labelling strategies for nanocapsules that allow us to judge their status and an in vitro method to study nanocapsule degradation and the influence of surface characteristics.
Collapse
Affiliation(s)
- Stefan Hoffmann
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Christian Gorzelanny
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Bruno Moerschbacher
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Francisco M Goycoolea
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
44
|
Mudalige TK, Qu H, Van Haute D, Ansar SM, Linder SW. Capillary electrophoresis and asymmetric flow field-flow fractionation for size-based separation of engineered metallic nanoparticles: A critical comparative review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
The Effect of Gold Nanorods Clustering on Near-Infrared Radiation Absorption. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this paper, the plasmonic resonant absorption of gold nanorods (GNRs) and GNR solutions was studied both numerically and experimentally. The heat generation in clustered GNR solutions with various concentrations was measured by exposing them to Near Infrared (NIR) light in experiment. Correspondingly, calculations based on the discrete-dipole approximation (DDA) revealed the same relationship between the maximum absorption efficiency and the nanorod orientation for the incident radiation. Additionally, both the plasmonic wavelength and the maximum absorption efficiency of a single nanorod were found to increase linearly with increasing aspect ratio (for a fixed nanorod volume). The wavelength of the surface plasmonic resonance (SPR) was found to change when the gold nanorods were closely spaced. Specifically, both a shift and a broadening of the resonance peak were attained when the distance between the nanorods was set to about 50 nm or less. The absorbance spectra of suspended nanorods at various volume fractions also showed that the plasmonic wavelength of the nanorods solution was at 780 ± 10 nm, which was in good agreement with the computational predictions for coupled side-by-side nanorods. When heated by NIR light, the rate of increase for both the temperature of solution and the absorbed light diminished when the volume fraction of suspended nanorods reached a value of 1.24×10−6. This matches with expectations for a partially clustered suspension of nanorods in water. Overall, this study reveals that particle clustering should be considered to accurately gauge the heat generation of the GNR hyperthermia treatments.
Collapse
|
46
|
Byzova NA, Safenkova IV, Slutskaya ES, Zherdev AV, Dzantiev BB. Less is More: A Comparison of Antibody–Gold Nanoparticle Conjugates of Different Ratios. Bioconjug Chem 2017; 28:2737-2746. [DOI: 10.1021/acs.bioconjchem.7b00489] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nadezhda A. Byzova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Irina V. Safenkova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Elvira S. Slutskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
47
|
Quantitative characterization of gold nanoparticles by size-exclusion and hydrodynamic chromatography, coupled to inductively coupled plasma mass spectrometry and quasi-elastic light scattering. J Chromatogr A 2017; 1511:59-67. [DOI: 10.1016/j.chroma.2017.06.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022]
|
48
|
Höldrich M, Liu S, Epe M, Lämmerhofer M. Taylor dispersion analysis, resonant mass measurement and bioactivity of pepsin-coated gold nanoparticles. Talanta 2017; 167:67-74. [DOI: 10.1016/j.talanta.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/29/2022]
|
49
|
Engel NY, Weiss VU, Marchetti-Deschmann M, Allmaier G. nES GEMMA Analysis of Lectins and Their Interactions with Glycoproteins - Separation, Detection, and Sampling of Noncovalent Biospecific Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:77-86. [PMID: 27644941 PMCID: PMC5174143 DOI: 10.1007/s13361-016-1483-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/24/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
In order to better understand biological events, lectin-glycoprotein interactions are of interest. The possibility to gather more information than the mere positive or negative response for interactions brought mass spectrometry into the center of many research fields. The presented work shows the potential of a nano-electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA) to detect weak, noncovalent, biospecific interactions besides still unbound glycoproteins and unreacted lectins without prior liquid phase separation. First results for Sambucus nigra agglutinin, concanavalin A, and wheat germ agglutinin and their retained noncovalent interactions with glycoproteins in the gas phase are presented. Electrophoretic mobility diameters (EMDs) were obtained by nES GEMMA for all interaction partners correlating very well with molecular masses determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of the individual molecules. Moreover, EMDs measured for the lectin-glycoprotein complexes were in good accordance with theoretically calculated mass values. Special focus was laid on complex formation for different lectin concentrations and binding specificities to evaluate the method with respect to results obtained in the liquid phase. The latter was addressed by capillary electrophoresis on-a-chip (CE-on-a-chip). Of exceptional interest was the fact that the formed complexes could be sampled according to their size onto nitrocellulose membranes after gas-phase separation. Subsequent immunological investigation further proved that the collected complex actually retained its native structure throughout nES GEMMA analysis and sampling. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Nicole Y Engel
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria.
| |
Collapse
|
50
|
Complex analysis of concentrated antibody-gold nanoparticle conjugates’ mixtures using asymmetric flow field-flow fractionation. J Chromatogr A 2016; 1477:56-63. [DOI: 10.1016/j.chroma.2016.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/19/2022]
|