1
|
Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening. Antioxidants (Basel) 2023; 12:antiox12020346. [PMID: 36829905 PMCID: PMC9952312 DOI: 10.3390/antiox12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The present study provides, for the first time, a physicochemical and biochemical characterization of the redox processes associated with the ripening of Solanum dulcamara L. (bittersweet) berries. Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) measurements of reactive oxygen species (ROS) were performed in parallel with the tissue-specific metabolic profiling of major antioxidants and assessment of antioxidant enzymes activity. Fruit transition from the mature green (MG) to ripe red (RR) stage involved changes in the qualitative and quantitative content of antioxidants and the associated cellular oxidation and peroxidation processes. The skin of bittersweet berries, which was the major source of antioxidants, exhibited the highest antioxidant potential against DPPH radicals and nitroxyl spin probe 3CP. The efficient enzymatic antioxidant system played a critical protective role against the deleterious effects of progressive oxidative stress during ripening. Here, we present the EPRI methodology to assess the redox status of fruits and to discriminate between the redox states of different tissues. Interestingly, the intracellular reoxidation of cell-permeable nitroxide probe 3CP was observed for the first time in fruits or any other plant tissue, and its intensity is herein proposed as a reliable indicator of oxidative stress during ripening. The described noninvasive EPRI technique has the potential to have broader application in the study of redox processes associated with the development, senescence, and postharvest storage of fruits, as well as other circumstances in which oxidative stress is implicated.
Collapse
|
2
|
Kamaraj C, Karthi S, Reegan AD, Balasubramani G, Ramkumar G, Kalaivani K, Zahir AA, Deepak P, Senthil-Nathan S, Rahman MM, Md Towfiqul Islam AR, Malafaia G. Green synthesis of gold nanoparticles using Gracilaria crassa leaf extract and their ecotoxicological potential: Issues to be considered. ENVIRONMENTAL RESEARCH 2022; 213:113711. [PMID: 35728640 DOI: 10.1016/j.envres.2022.113711] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The use of vegetal species for gold nanoparticles (AuNPs) biosynthesis can constitute an alternative to replacing the extensive use of several hazardous chemicals commonly used during NPs synthesis and, therefore, can reduce biological impacts induced by the release of these products into the natural environment. However, the "green nanoparticles" and/or "eco-friendly nanoparticles" label does not ensure that biosynthesized NPs are harmless to non-target organisms. Thus, we aimed to synthesize AuNPs from seaweed Gracilaria crassa aqueous extract through an eco-friendly, fast, one-pot synthetic route. The formation of spherical, stable, polycrystalline NPs with a diameter of 32.0 nm ± 4.0 nm (mean ±SEM) was demonstrated by UV-vis spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy, energy-dispersive X-ray and X-ray diffraction measurement, and Fourier-transform infrared spectroscopy analysis. In addition, different phytocomponents were identified in the biosynthesized AuNPs, using Gas Chromatography-Mass Spectrometry (GC-MS). However, both G. crassa aqueous extract and the biosynthesized AuNPs showed high ecotoxicity in Anopheles stephensi larvae exposed to different concentrations. Therefore, our study supports the potential of seaweed G. crassa as a raw material source for AuNPs biosynthesis while also shedding light on its ecotoxicological potential, which necessitates consideration of its risk to aquatic biota.
Collapse
Affiliation(s)
- Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India.
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India.
| | - Appadurai Daniel Reegan
- National Center for Disease Control, Bengaluru Branch, No:08, NTI Campus, Bellary Road, Bengaluru, 560 003, Karnataka, India.
| | - Govindasamy Balasubramani
- Division of Research & Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - Govindaraju Ramkumar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India.
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, 627 802, Tirunelveli, Tamil Nadu, India.
| | - A Abduz Zahir
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam, 632 509, Vellore District, Tamil Nadu, India.
| | - Paramasivam Deepak
- Department of Biotechnology, Dr. N.G.P. Arts and Science College, Dr.N.G.P. - Kalapatti Road, Coimbatore, 641048, Tamil Nadu, India.
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India.
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | | | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Programa in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
3
|
Natural Xanthine Oxidase Inhibitor 5- O-Caffeoylshikimic Acid Ameliorates Kidney Injury Caused by Hyperuricemia in Mice. Molecules 2021; 26:molecules26237307. [PMID: 34885887 PMCID: PMC8659034 DOI: 10.3390/molecules26237307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Xanthine oxidase (XOD) inhibition has long been considered an effective anti-hyperuricemia strategy. To identify effective natural XOD inhibitors with little side effects, we performed a XOD inhibitory assay-coupled isolation of compounds from Smilacis Glabrae Rhizoma (SGR), a traditional Chinese medicine frequently prescribed as anti-hyperuricemia agent for centuries. Through the in vitro XOD inhibitory assay, we obtained a novel XOD inhibitor, 5-O-caffeoylshikimic acid (#1, 5OCSA) with IC50 of 13.96 μM, as well as two known XOD inhibitors, quercetin (#3) and astilbin (#6). Meanwhile, we performed in silico molecular docking and found 5OCSA could interact with the active sites of XOD (PDB ID: 3NVY) with a binding energy of −8.6 kcal/mol, suggesting 5OCSA inhibits XOD by binding with its active site. To evaluate the in vivo effects on XOD, we generated a hyperuricemia mice model by intraperitoneal injection of potassium oxonate (300 mg/kg) and oral gavage of hypoxanthine (500 mg/kg) for 7 days. 5OCSA could inhibit both hepatic and serum XOD in vivo, together with an improvement of histological and multiple serological parameters in kidney injury and HUA. Collectively, our results suggested that 5OCSA may be developed into a safe and effective XOD inhibitor based on in vitro, in silico and in vivo evidence.
Collapse
|
4
|
Venditti A, Frezza C, Rossi G, Sciubba F, Ornano L, De Vita D, Toniolo C, Tomassini L, Foddai S, Nicoletti M, Di Cocco ME, Bianco A, Serafini M. A new diterpene and other compounds from the unripe female cones of Wollemia nobilis. Nat Prod Res 2020; 35:3839-3849. [PMID: 32233655 DOI: 10.1080/14786419.2020.1741585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this work, the first phytochemical analysis ever performed on the unripe female cones of Wollemia nobilis W. G. Jones, K. D. Hill & J. M. Allen was described. The analysis evidenced the presence of a new derivative of sandaracopimaric acid together with rare diterpenoid derivatives and known compounds of chemosystematic and bioactivity relevance. Some of these were evidenced in the species or in the family for the first time during this study. The further implications of the isolated compounds in the field of chemosystematics, pharmacology and nutraceutics were discussed.
Collapse
Affiliation(s)
| | - Claudio Frezza
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Rome, Italy
| | - Giacomo Rossi
- Dipartimento di Chimica, Università di Roma "La Sapienza", Rome, Italy
| | - Fabio Sciubba
- Dipartimento di Chimica, Università di Roma "La Sapienza", Rome, Italy
| | - Luigi Ornano
- Dipartimento di Chimica, Università di Roma "La Sapienza", Rome, Italy
| | - Daniela De Vita
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Rome, Italy
| | - Chiara Toniolo
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Rome, Italy
| | - Lamberto Tomassini
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Rome, Italy
| | - Sebastiano Foddai
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Rome, Italy
| | - Marcello Nicoletti
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Rome, Italy
| | | | | | - Mauro Serafini
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Rome, Italy
| |
Collapse
|
5
|
Sirisena S, Zabaras D, Ng K, Ajlouni S. Characterization of Date (Deglet Nour) Seed Free and Bound Polyphenols by High-Performance Liquid Chromatography-Mass Spectrometry. J Food Sci 2017; 82:333-340. [PMID: 28098940 DOI: 10.1111/1750-3841.13625] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/16/2023]
Abstract
Date (Pheonix dactylifera L.) seeds are a valuable and abundant by-product with various potential food applications. Free polyphenols (FPPs) and bound polyphenols (BPPs) of date seeds from Deglet Nour variety grown in Australia were investigated using high-performance liquid chromatography-mass spectrometry. The FPP fraction contained the following main phenolic compounds per gram of date seed powder; procyanidin B1 (499.8 ± 7.8 μg), procyanidin B2 (288.6 ± 6.1 μg), catechin (167.6 ± 2.1 μg), epicatechin (39.44 ± 0.39 μg), and protocatechuic acid (1.77 ± 0.22 μg). Additionally, one of the 2 A-type dimers was confirmed as procyanidin A2 (24.05 ± 0.12 μg/g). A-type dimers have not been reported before in date seeds. The BPP fraction contained epicatechin (52.59 ± 0.76 μg/g) and procyanidin B2 (294.2 ± 3.7 μg/g), while several peaks exhibiting ESI- m/z of 153 indicated dihydroxybenzoic acid isomers including protocatechuic acid (2.138 ± 0.025 μg/g). These findings contributed to our knowledge of date seed phytochemicals and understanding of their contribution to the reported bioactivities.
Collapse
Affiliation(s)
- Sameera Sirisena
- Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | | | - Ken Ng
- Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - Said Ajlouni
- Faculty of Veterinary and Agricultural Sciences, Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|