1
|
Sha Y, Yu H, Xiong J, Wang J, Fei T, Wu D, Yang K, Zhang L. Separation and purification of active ingredients in tobacco by free-flow electrophoresis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5885-5890. [PMID: 37905587 DOI: 10.1039/d3ay01708g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The active ingredients from tobacco extracts were continuously separated and purified using a homemade free-flow electrophoresis apparatus. A rectangular free flow electrophoresis device was constructed for the continuous separation and preparation, and the operating conditions of the device were optimized. The fractions obtained from the free-flowing component collection unit were then detected by HPLC and GC-MS. The results showed that a 90% methanol-water solution could maximize the extraction of the active components from tobacco. Chlorogenic acid and nicotine were enriched in three and four of 24 fractions, respectively, after free-flow isoelectric focusing electrophoresis. 2-Hydroxy-2-cyclopentene-1-one, 1-(2-methyl-1,3-oxathiolan-2-yl) ethanone, nornicotine, cotinine, and scopolamine were separated and enriched synchronously. Overall, the use of free-flow electrophoresis technology for the separation and purification of the active substances in tobacco can improve the comprehensive utilization rate of tobacco.
Collapse
Affiliation(s)
- Yunfei Sha
- Key Laboratory of Cigarette Smoke, Technology Center of Shanghai Tobacco Group Co. Ltd, Shanghai, 200082, China
| | - Haoran Yu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Junwei Xiong
- Key Laboratory of Cigarette Smoke, Technology Center of Shanghai Tobacco Group Co. Ltd, Shanghai, 200082, China
| | - Junfeng Wang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ting Fei
- Key Laboratory of Cigarette Smoke, Technology Center of Shanghai Tobacco Group Co. Ltd, Shanghai, 200082, China
| | - Da Wu
- Key Laboratory of Cigarette Smoke, Technology Center of Shanghai Tobacco Group Co. Ltd, Shanghai, 200082, China
| | - Kai Yang
- Key Laboratory of Cigarette Smoke, Technology Center of Shanghai Tobacco Group Co. Ltd, Shanghai, 200082, China
| | - Lei Zhang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
2
|
Mahmud S, Ramproshad S, Deb R, Dutta D. A review of the zone broadening contributions in free-flow electrophoresis. Electrophoresis 2023; 44:1519-1538. [PMID: 37548630 DOI: 10.1002/elps.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
The broadening of analyte streams, as they migrate through a free-flow electrophoresis (FFE) channel, often limits the resolving power of FFE separations. Under laminar flow conditions, such zonal spreading occurs due to analyte diffusion perpendicular to the direction of streamflow and variations in the lateral distance electrokinetically migrated by the analyte molecules. Although some of the factors that give rise to these contributions are inherent to the FFE method, others originate from non-idealities in the system, such as Joule heating, pressure-driven crossflows, and a difference between the electrical conductivities of the sample stream and background electrolyte. The injection process can further increase the stream width in FFE separations but normally influencing all analyte zones to an equal extent. Recently, several experimental and theoretical works have been reported that thoroughly investigate the various contributions to stream variance in an FFE device for better understanding, and potentially minimizing their magnitudes. In this review article, we carefully examine the findings from these studies and discuss areas in which more work is needed to advance our comprehension of the zone broadening contributions in FFE assays.
Collapse
Affiliation(s)
- Sakur Mahmud
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Sarker Ramproshad
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Rajesh Deb
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Debashis Dutta
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
3
|
Sohail A, Jiang X, Wahid A, Wang H, Cao C, Xiao H. Free-flow zone electrophoresis facilitated proteomics analysis of heterogeneous subpopulations in H1299 lung cancer cells. Anal Chim Acta 2022; 1227:340306. [DOI: 10.1016/j.aca.2022.340306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/30/2022] [Accepted: 08/21/2022] [Indexed: 11/01/2022]
|
4
|
Duša F, Šalplachta J, Horká M, Lunerová K, Rosenbergová K, Kubíček O. Novel chip-based isoelectric focusing device for fractionation of bacteria prior to their mass spectrometry identification. Anal Chim Acta 2022; 1192:339333. [DOI: 10.1016/j.aca.2021.339333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/01/2022]
|
5
|
Dong S, Jiang Z, Liu Z, Chen L, Zhang Q, Tian Y, Sohail A, Khan MI, Xiao H, Liu X, Wang Y, Li H, Wu H, Liu W, Cao C. Purification of low-abundance lysozyme in egg white via free-flow electrophoresis with gel-filtration chromatography. Electrophoresis 2020; 41:1529-1538. [PMID: 32529672 DOI: 10.1002/elps.201900479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 11/07/2022]
Abstract
As an effective separation tool, free-flow electrophoresis has not been used for purification of low-abundance protein in complex sample matrix. Herein, lysozyme in complex egg white matrix was chosen as the model protein for demonstrating the purification of low-content peptide via an FFE coupled with gel fitration chromatography (GFC). The crude lysozyme in egg while was first separated via free-flow zone electrophoresis (FFZE). After that, the fractions with lysozyme activity were condensed via lyophilization. Thereafter, the condensed fractions were further purified via a GFC of Sephadex G50. In all of the experiments, a special poly(acrylamide- co-acrylic acid) (P(AM-co-AA)) gel electrophoresis and a mass spectrometry were used for identification of lysozyme. The conditions of FFZE were optimized as follows: 130 μL/min sample flow rate, 4.9 mL/min background buffer of 20 mM pH 5.5 Tris-Acetic acid, 350 V, and 14 °C as well as 2 mg/mL protein content of crude sample. It was found that the purified lysozyme had the purity of 80% and high activity as compared with its crude sample with only 1.4% content and undetectable activity. The recoveries in the first and second separative steps were 65% and 82%, respectively, and the total recovery was about 53.3%. The reasons of low recovery might be induced by diffusion of lysozyme out off P(AM-co-AA) gel and co-removing of high-abundance egg ovalbumin. All these results indicated FFE could be used as alternative tool for purification of target solute with low abundance.
Collapse
Affiliation(s)
- Shuang Dong
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ziqin Jiang
- College of Biological Sciences, China Agricultural University, Beijing, P. R. China.,State Key Laboratory of Agro-biotechnology, China Agricultural University, Beijing, P. R. China
| | - Zhen Liu
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ling Chen
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qiang Zhang
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Youli Tian
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Amir Sohail
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Muhammad Idrees Khan
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xiaoping Liu
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuxing Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Honggen Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Hanyu Wu
- College of Biological Sciences, China Agricultural University, Beijing, P. R. China.,State Key Laboratory of Agro-biotechnology, China Agricultural University, Beijing, P. R. China
| | - Weiwen Liu
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chengxi Cao
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
6
|
Wang S, Zhang L, Sun H, Chu Z, Chen H, Zhao Y, Zhang W. Carrier ampholyte-free free-flow isoelectric focusing for separation of protein. Electrophoresis 2019; 40:2610-2617. [PMID: 30977523 DOI: 10.1002/elps.201900148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/06/2019] [Indexed: 01/20/2023]
Abstract
Free-flow isoelectric focusing (FFIEF) has the merits of mild separation conditions, high recovery and resolution, but suffers from the issues of ampholytes interference and high cost due to expensive carrier ampholytes. In this paper, a home-made carrier ampholyte-free FFIEF system was constructed via orientated migration of H+ and OH- provided by electrode solutions. When applying an electric field, a linear pH gradient from pH 4 to 9 (R2 = 0.994) was automatically formed by the electromigration of protons and hydroxyl ions in the separation chamber. The carrier ampholyte-free FFIEF system not only avoids interference of ampholyte to detection but also guarantees high separation resolution by establishing stable pH gradient. The separation selectivity was conveniently adjusted by controlling operating voltage and optimizing the composition, concentration and flow rate of the carrier buffer. The constructed system was applied to separation of proteins in egg white, followed by MADLI-TOF-MS identification. Three major proteins, ovomucoid, ovalbumin and ovotransferrin, were successfully separated according to their pI values with 15 mmol/L Tris-acetic acid (pH = 6.5) as carrier buffer at a flow rate of 12.9 mL/min.
Collapse
Affiliation(s)
- Shuai Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Haofan Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Zhanying Chu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Haihong Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Yameng Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
7
|
Kong FZ, Yang Y, He YC, Zhang Q, Li GQ, Fan LY, Xiao H, Li S, Cao CX. Design of suitable carrier buffer for free-flow zone electrophoresis by charge-to-mass ratio and band broadening analysis. Electrophoresis 2016; 37:2393-400. [DOI: 10.1002/elps.201600040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/05/2016] [Accepted: 06/14/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Fan-zhi Kong
- Laboratory of Analytical Biochemistry and Bio-separation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Ying Yang
- Laboratory of Analytical Biochemistry and Bio-separation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai P. R. China
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou P. R. China
| | - Yu-chen He
- Laboratory of Analytical Biochemistry and Bio-separation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Qiang Zhang
- Laboratory of Analytical Biochemistry and Bio-separation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Guo-qing Li
- Laboratory of Analytical Biochemistry and Bio-separation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Liu-yin Fan
- Laboratory of Analytical Biochemistry and Bio-separation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Hua Xiao
- Laboratory of Analytical Biochemistry and Bio-separation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Shan Li
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou P. R. China
| | - Cheng-xi Cao
- Laboratory of Analytical Biochemistry and Bio-separation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai P. R. China
| |
Collapse
|
8
|
Kašička V. Outlook--Analysis of amino acids, peptides, and proteins: a virtual special issue. J Sep Sci 2016; 38:vii-viii. [PMID: 25885353 DOI: 10.1002/jssc.201570075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Choi M, Na Y, Kim SJ. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber. Electrophoresis 2015; 36:2896-901. [DOI: 10.1002/elps.201500258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/09/2015] [Accepted: 08/11/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Munseok Choi
- Department of Mechanical Engineering; Konkuk University; Seoul Republic of Korea
| | - Yang Na
- Department of Mechanical Engineering; Konkuk University; Seoul Republic of Korea
| | - Sung-Jin Kim
- Department of Mechanical Engineering; Konkuk University; Seoul Republic of Korea
| |
Collapse
|