2
|
Xu ML, Zheng ZY, Xia YJ, Liu EYL, Chan SKH, Hu WH, Duan R, Dong TTX, Zhan CS, Shang XH, Tsim KWK. Shexiang Baoxin Pill, a Formulated Chinese Herbal Mixture, Induces Neuronal Differentiation of PC12 Cells: A Signaling Triggered by Activation of Protein Kinase A. Front Pharmacol 2019; 10:1130. [PMID: 31649530 PMCID: PMC6794430 DOI: 10.3389/fphar.2019.01130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/30/2019] [Indexed: 01/24/2023] Open
Abstract
Background: Shexiang Baoxin Pill (SBP) is a well-known composite formula of traditional Chinese medicine (TCM), which is commonly used today in treating cardiovascular diseases. SBP consists of seven materials thereof, including Moschus, extract of Ginseng Radix et Rhizoma, Bovis Calculus Artifactus, Cinnamomi Cortex, Styrax, Bufonis Venenum, and Borneolum Syntheticum. Here, we are investigating the potential roles of SBP in inducing neuron differentiation, i.e., seeking possible application in neurodegenerative diseases. Methods: Water and ethanol extracts of SBP, denoted as SBPwater and SBPEtOH, respectively, as well as its individual herbal materials, were standardized and applied onto cultured rat pheochromocytoma PC12 cells. The potential effect of SBP extracts in neuronal differentiation was suggested by following parameters: (i) induction of neurite outgrowth of PC12 cells, (ii) increase of neurofilament expression, and (iii) activation of transcription of neurofilament. Results: The treatments of SBPwater and SBPEtOH, or extracts from individual herbal materials, with or without low concentration of nerve growth factor (NGF), could potentiate the differentiation of cultured PC12 cells. The differentiation was indicated by increase of neurite outgrowth, as well as expression of neurofilaments. In addition, application of H89, a protein kinase A (PKA) inhibitor, suppressed the SBP-induced neurofilament expressions, as well as the phosphorylation of cAMP-responsive element binding protein (CREB) in cultures. Conclusion: SBP is proposed to possess trophic activity in modulating neuronal differentiation of PC12 cells, and this induction is shown to be mediated partly by a cAMP-PKA signaling pathway. These results indicate the neurite-promoting SBP could be useful in developing potential drug in treating or preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Miranda Li Xu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Zhong-Yu Zheng
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ying-Jie Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Etta Yun-Le Liu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Stanley Ka-Ho Chan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Wei-Hui Hu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chang-Sen Zhan
- Shanghai Hutchison Pharmaceuticals Ltd, Shanghai, China.,Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
| | - Xiao-Hui Shang
- Shanghai Hutchison Pharmaceuticals Ltd, Shanghai, China.,Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
3
|
Gu X, Huang J, Zhang L, Zhang Y, Wang CZ, Sun C, Yao D, Li F, Chen L, Yuan CS. Efficient discovery and capture of new neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines using magnetic molecularly imprinted polymers as artificial antibodies. J Sep Sci 2018; 40:3522-3534. [PMID: 28704580 DOI: 10.1002/jssc.201700595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
In the scope of stroke treatment, new neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines were discovered and captured. To do so, highly selective magnetic molecularly imprinted polymers with a core-shell structure were prepared as artificial antibodies. According to the results of computational simulations, we designed and synthesized various polymers with varying amounts and types of template, functional monomer, cross-linker, and solvent. Characterization and performance tests revealed that the most appropriate artificial antibodies showed uniform spherical morphologies, large adsorption capacities, fast-binding kinetics, high selectivity, and quick separation. These artificial antibodies were then used as sorbents for dispersive magnetic solid-phase extraction coupled with high-performance liquid chromatography and mass spectrometry to capture and identify structural analogs to ZL006 from extracts of Scutellariae radix, Psoraleae fructus, and Trifolium pratense. Furthermore, according to the neuroprotective effect and coimmunoprecipitation test, Baicalein, Neobavaisoflavone, Corylifol A, and Biochanin A can be the potential uncouplers of neuronal nitric oxide synthase-postsynaptic density protein-95. Therefore, this present study contributes valuable information for the discovery of neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines.
Collapse
Affiliation(s)
- Xiaoli Gu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Huang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Chenghong Sun
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dandan Yao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Beck A, Jordan LK, Herlitze S, Amtmann A, Christian J, Brogden G, Adamek M, Naim HY, Maria Becker A. Quantification of sterols from carp cell lines by using HPLC-MS. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201700021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alexander Beck
- Institute of Bioprocess Engineering; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Lisa Katharina Jordan
- Institute of Bioprocess Engineering; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Simon Herlitze
- Institute of Bioprocess Engineering; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Anette Amtmann
- Institute of Bioprocess Engineering; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Juergen Christian
- Bavarian Health and Food Safety Authority; Institute for Animal Health II; Erlangen Germany
| | - Graham Brogden
- Department of Physiological Chemistry; University of Veterinary Medicine; Hannover Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit; Institute of Parasitology; University of Veterinary Medicine; Hannover Germany
| | - Hassan Y. Naim
- Department of Physiological Chemistry; University of Veterinary Medicine; Hannover Germany
| | - Anna Maria Becker
- Institute of Bioprocess Engineering; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
6
|
Hou S, Wang J, Li Z, Wang Y, Wang Y, Yang S, Xu J, Zhu W. Five-descriptor model to predict the chromatographic sequence of natural compounds. J Sep Sci 2016; 39:864-72. [PMID: 26718117 DOI: 10.1002/jssc.201501016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/18/2015] [Accepted: 12/17/2015] [Indexed: 02/02/2023]
Abstract
Despite the recent introduction of mass detection techniques, ultraviolet detection is still widely applied in the field of the chromatographic analysis of natural medicines. Here, a neural network cascade model consisting of nine small artificial neural network units was innovatively developed to predict the chromatographic sequence of natural compounds by integrating five molecular descriptors as the input. A total of 117 compounds of known structure were collected for model building. The order of appearance of each compound was determined in gradient chromatography. Strong linear correlation was found between the predicted and actual chromatographic position orders (Spearman's rho = 0.883, p < 0.0001). Application of the model to the external validation set of nine natural compounds was shown to dramatically increase the prediction accuracy of the real chromatographic order of multiple compounds. A case study shows that chromatographic sequence prediction based on a neural network cascade facilitated compound identification in the chromatographic fingerprint of Radix Salvia miltiorrhiza. For natural medicines of known compound composition, our method provides a feasible means for identifying the constituents of interest when only ultraviolet detection is available.
Collapse
Affiliation(s)
- Shuying Hou
- Department of Pharmacy Intravenous Admixture Service, the First Affiliated Hospital of Harbin Medical University, Harbin, P. R., China
| | - Jinhua Wang
- Department of Pharmacy Intravenous Admixture Service, the First Affiliated Hospital of Harbin Medical University, Harbin, P. R., China
| | - Zhangming Li
- Department of Pharmacy Administration, Harbin Medical University, Harbin, P. R., China
| | - Yang Wang
- Department of Pharmacy Intravenous Admixture Service, the First Affiliated Hospital of Harbin Medical University, Harbin, P. R., China
| | - Ying Wang
- Department of Pharmacy Intravenous Admixture Service, the First Affiliated Hospital of Harbin Medical University, Harbin, P. R., China
| | - Songling Yang
- Department of Biology Pharmacy, Heilongjiang Vocational College of Biology Science and Technology, Harbin, P. R., China
| | - Jia Xu
- Department of Nephrology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, P. R., China
| | - Wenliang Zhu
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University, Harbin, P. R., China
| |
Collapse
|
7
|
Sugimoto H, Kakehi M, Satomi Y, Kamiguchi H, Jinno F. Method development for the determination of 24S-hydroxycholesterol in human plasma without derivatization by high-performance liquid chromatography with tandem mass spectrometry in atmospheric pressure chemical ionization mode. J Sep Sci 2015; 38:3516-24. [DOI: 10.1002/jssc.201500719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroshi Sugimoto
- Drug Metabolism and Pharmacokinetics Research Laboratories; Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited
| | - Masaaki Kakehi
- Drug Metabolism and Pharmacokinetics Research Laboratories; Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited
| | - Yoshinori Satomi
- Integrated Technology Research Laboratories; Pharmaceutical Research Division; Takeda Pharmaceutical Company Limited
| | - Hidenori Kamiguchi
- Integrated Technology Research Laboratories; Pharmaceutical Research Division; Takeda Pharmaceutical Company Limited
| | - Fumihiro Jinno
- Drug Metabolism and Pharmacokinetics Research Laboratories; Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited
| |
Collapse
|