1
|
Lu C, Wang X, Ma J, Wang M, Liu W, Wang G, Ding Y, Lin Z, Li Y. Chemical substances and their activities in sea cucumber Apostichopus japonicus: A review. Arch Pharm (Weinheim) 2024; 357:e2300427. [PMID: 37853667 DOI: 10.1002/ardp.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Apostichopus japonicus, also known as Stichopus japonicus, with medicinal and food homologous figures, is a globally recognized precious ingredient with extremely high nutritional value. There is no relevant review available through literature search, so this article selects the research articles through the keywords "sea cucumber" and "Apostichopus japonicus (Stichopus japonicus)" in six professional databases, such as Wiley, PubMed, ScienceDirect, ACS, Springer, and Web of Science, from 2000 to the present, summarizing the extraction, isolation, and purification methods for the four major categories (polysaccharides, proteins and peptides, saponins, and other components) of the A. japonicus chemical substances and 10 effective biological activities of A. japonicus. Included are anticoagulation, anticancer/antitumor activities, hematopoiesis, regulation of gut microbiota, and immune regulatory activities that correspond to traditional efficacy. Literature support is provided for the development of medicines and functional foods and related aspects that play a leading role in future directions.
Collapse
Affiliation(s)
- Chang Lu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengtong Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangyue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
2
|
Rapid identification of geographical origin of sea cucumbers Apostichopus japonicus using FT-NIR coupled with light gradient boosting machine. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Dai YL, Kim EA, Luo HM, Jiang YF, Oh JY, Heo SJ, Jeon YJ. Characterization and anti-tumor activity of saponin-rich fractions of South Korean sea cucumbers ( Apostichopus japonicus). JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2283-2292. [PMID: 32431354 PMCID: PMC7230107 DOI: 10.1007/s13197-020-04266-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/12/2020] [Accepted: 01/17/2020] [Indexed: 12/21/2022]
Abstract
In this study, the saponin-rich fractions of five individual (two Red and three Black) sea cucumbers (Apostichopus japonicus) in South Korea were investigated for their antiproliferative effect against HL-60, B16F10, MCF-7, and Hep3B tumor cell lines. The red sea cucumber saponin-rich fraction (SSC) from Jeju Island (JRe) decreased the growth of HL-60 with an IC50 value of 23.55 ± 3.40 μg/mL, which represented the strongest anticancer activity among the extracts. Further, SSC downregulated B-cell lymphoma extra-large (Bcl-xL), while upregulating, to different degrees, Bcl-2-associated X protein (Bax), caspase-9, caspase-3, PARP cleavage, and apoptotic bodies in cancer cells. Evidence for SSC inducing apoptosis via the mitochondria-mediated pathway was found. The contents of SSCs were determined using ultra high-performance liquid chromatography coupled with a quadrupole orbitrap mass spectrometry to comparatively evaluate the regional influence. In West Sea, the total SSC content of A. japonicus was 15.5 mg/g, representing the highest content, while A. japonicus in the South Sea yielded the lowest content at 8 mg/g. The major saponin constituent in SSC was identified as Holotoxin A1, which may the anti-tumor compound in A. japonicus.
Collapse
Affiliation(s)
- Yu-Lin Dai
- 1Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
- 2Department of Marine Life Science, Jeju National University, Jeju, 63243 Republic of Korea
| | - Eun-A Kim
- 3Jeju Research Institute, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349 Republic of Korea
| | - Hao-Ming Luo
- 4School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Yun-Fei Jiang
- 2Department of Marine Life Science, Jeju National University, Jeju, 63243 Republic of Korea
| | - Jae-Young Oh
- 2Department of Marine Life Science, Jeju National University, Jeju, 63243 Republic of Korea
| | - Soo-Jin Heo
- 3Jeju Research Institute, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349 Republic of Korea
| | - You-Jin Jeon
- 2Department of Marine Life Science, Jeju National University, Jeju, 63243 Republic of Korea
- 5Marine Science Institute, Jeju National University, Jeju, 63333 Republic of Korea
| |
Collapse
|
4
|
Pedrosa AM, de Castro WV, Castro AHF, Duarte-Almeida JM. Validated spectrophotometric method for quantification of total triterpenes in plant matrices. Daru 2020; 28:281-286. [DOI: 10.1007/s40199-020-00342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/30/2020] [Indexed: 10/24/2022] Open
|
5
|
Cao L, Zhang H, Zhang H, Yang L, Wu M, Zhou P, Huang Q. Determination of Propionylbrassinolide and Its Impurities by High-Performance Liquid Chromatography with Evaporative Light Scattering Detection. Molecules 2018; 23:molecules23030531. [PMID: 29495470 PMCID: PMC6017011 DOI: 10.3390/molecules23030531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 11/16/2022] Open
Abstract
The discovery of brassinolide in 1979, a milestone in brassinosteroids research, has sparked great interest of brassinolide analogs (BLs) in agricultural applications. Among these BLs, propionylbrassinolide has captured considerable attention because it shows plant growth regulating activity with an excellent durability. Two impurities of propionylbrassinolide were isolated and purified by semi-preparative high-performance liquid chromatography (HPLC), and the chemical structures were confirmed. For simultaneous separation and determination of propionylbrassinolide and impurities, an efficient analytical method based on HPLC with evaporative light scattering detector (HPLC-ELSD) was developed. The optimized analysis was performed on a C18 reversed phase column (250 mm × 4.60 mm, 5 μm) with isocratic elution of acetonitrile and water (90:10, v/v) as the mobile phase. The drift tube temperature of the ELSD system was set to 50 °C and the auxiliary gas pressure was 150 kPa. The regression equations demonstrated a good linear relationship (R² = 0.9989-0.9999) within the test ranges. The limits of detection (LODs) and quantification (LOQs) for propionylbrassinolide, impurity 1 and 2 were 1.3, 1.2, 1,3 and 4.3, 4.0, 4.2 mg/L, respectively. The fully validated HPLC-ELSD method was readily applied to quantify the active ingredient and impurities in propionylbrassinolide technical concentrate. Moreover, the optimized separation conditions with ELSD have been successfully transferred to mass spectrometry (MS) detector for LC-MS determination.
Collapse
Affiliation(s)
- Lidong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Hong Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Hongjun Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China.
| | - Li Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Miaomiao Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Puguo Zhou
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China.
| | - Qiliang Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
6
|
Techniques for the analysis of pentacyclic triterpenoids in medicinal plants. J Sep Sci 2017; 41:6-19. [DOI: 10.1002/jssc.201700201] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/04/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
|
7
|
Luo Z, Shi H, Zhang K, Qin X, Guo Y, Ma X. Liquid chromatography with tandem mass spectrometry method for the simultaneous determination of multiple sweet mogrosides in the fruits ofSiraitia grosvenoriiand its marketed sweeteners. J Sep Sci 2016; 39:4124-4135. [DOI: 10.1002/jssc.201600563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing China
| | - Hongwu Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing China
| | - Kailun Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing China
| | - Xijun Qin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing China
| | - Yuhua Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing China
- Yunnan Branch Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences; Jinghong China
| |
Collapse
|