1
|
Synthesis of Mesoporous Silica Imprinted Salbutamol with Two TEOS/MTES Ratio Compositions through the Direct Incorporation Method for Salbutamol Separation. ScientificWorldJournal 2023; 2023:2871761. [PMID: 36755774 PMCID: PMC9902164 DOI: 10.1155/2023/2871761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Molecularly imprinted mesoporous silica (MIPMS) is one of the methods to improve site accessibility molecule target on molecularly imprinted polymer (MIP) for application in solid-phase extraction (SPE). The MIPMS was prepared using salbutamol sulfate as template molecule, cetyltrimethylammonium bromide as a directing agent, and tetraethyl orthosilicate and methyltriethoxysilane were used as silica precursor and organosilane. In this study, two TEOS : MTES ratios were used. The MIPMS-2 with 3 : 1 ratio of TEOS : MTES has better analytical performance than the MIPMS-1 with 2 : 1 ratio of TEOS : MTES. The adsorption capacity of MIPMS-2 was about 0.0934 mg/g, and it was 0.0407 mg/g for NIPMS-2. The extraction ability of MIPMS-2 was good, with a recovery of about 104.79% ± 1.01% of salbutamol in spiked serum. The imprinting factor (IF) value obtained is 1.2. When serum was spiked with salbutamol and terbutaline, the ability of NIPMS-2 to recognize salbutamol increased. Therefore, optimizing the conditions for the MIPMS synthesis is necessary to produce a sorbent with better selectivity.
Collapse
|
2
|
Nicholls IA, Golker K, Olsson GD, Suriyanarayanan S, Wiklander JG. The Use of Computational Methods for the Development of Molecularly Imprinted Polymers. Polymers (Basel) 2021; 13:2841. [PMID: 34502881 PMCID: PMC8434026 DOI: 10.3390/polym13172841] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.
Collapse
Affiliation(s)
- Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden; (K.G.); (G.D.O.); (S.S.); (J.G.W.)
| | | | | | | | | |
Collapse
|
3
|
Rational Design and Experimental Research on the Self-Assembled System of Thermosensitive Molecularly Imprinted Polymers Formed by α-Lipoic Acid and N-Vinyl Caprolactam. INT J POLYM SCI 2021. [DOI: 10.1155/2021/6693198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this paper, the main work was to study the theoretical self-assembly process of thermosensitive molecularly imprinted polymers (MIPs) for α-lipoic acid and to investigate thermosensitive functional monomers through density functional theory calculations (DFT) and intermolecular weak interaction analysis. The M06-2X/6-311+G (d, p) level was used to study the structural parameters, bonding sites, natural population analysis, binding energies (
), atom in molecules (AIM), independent gradient model (IGM), and imprinted molar ratio. The results revealed that α-lipoic acid mainly interacted with N-vinyl caprolactam (NVCL) by weak hydrogen bonds, and the best conditions for MIP synthesis were an optimum molar ratio of 1 : 4 (α-lipoic acid/NVCL). The thermosensitive properties showed that the highest adsorption was at 40°C and the lowest adsorption was at 20°C; also, the MIPs released the intercepted α-lipoic acid inside polymers, and the lower critical solution temperatures (LCST) of MIPs and nonimprinted polymers (NIPs) are 25.7°C and 19.4°C, respectively. In this study, the thermosensitive MIPs displayed a different adsorption capacity towards NVCL, which could be applied for controlled separation and release of α-lipoic acid in different temperatures in a complex matrix.
Collapse
|
4
|
Suryana S, Mutakin, Rosandi Y, Hasanah AN. An Update on Molecularly Imprinted Polymer Design through a Computational Approach to Produce Molecular Recognition Material with Enhanced Analytical Performance. Molecules 2021; 26:1891. [PMID: 33810542 PMCID: PMC8036856 DOI: 10.3390/molecules26071891] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Molecularly imprinted polymer (MIP) computational design is expected to become a routine technique prior to synthesis to produce polymers with high affinity and selectivity towards target molecules. Furthermore, using these simulations reduces the cost of optimizing polymerization composition. There are several computational methods used in MIP fabrication and each requires a comprehensive study in order to select a process with results that are most similar to properties exhibited by polymers synthesized through laboratory experiments. Until now, no review has linked computational strategies with experimental results, which are needed to determine the method that is most appropriate for use in designing MIP with high molecular recognition. This review will present an update of the computational approaches started from 2016 until now on quantum mechanics, molecular mechanics and molecular dynamics that have been widely used. It will also discuss the linear correlation between computational results and the polymer performance tests through laboratory experiments to examine to what extent these methods can be relied upon to obtain polymers with high molecular recognition. Based on the literature search, density functional theory (DFT) with various hybrid functions and basis sets is most often used as a theoretical method to provide a shorter MIP manufacturing process as well as good analytical performance as recognition material.
Collapse
Affiliation(s)
- Shendi Suryana
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (S.S.); (M.)
- Pharmacy Department, Faculty of Mathematics and Natural Sciences, Garut University, Jl. Jati No.42B, Tarogong, Garut 44151, Indonesia
| | - Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (S.S.); (M.)
| | - Yudi Rosandi
- Geophysic Department, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia;
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (S.S.); (M.)
- Drug Development Study Center, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| |
Collapse
|
5
|
Study of self-assembly system of norfloxacin molecularly imprinted polymers based on simulated design. Theor Chem Acc 2021. [DOI: 10.1007/s00214-020-02712-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Hand RA, Piletska E, Bassindale T, Morgan G, Turner N. Application of molecularly imprinted polymers in the anti-doping field: sample purification and compound analysis. Analyst 2020; 145:4716-4736. [PMID: 32500888 DOI: 10.1039/d0an00682c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The problem posed by anti-doping requirements is one of the great analytical challenges; multiple compound detection at low ng ml-1 levels from complex samples, with requirements for exceptional confidence in results. This review surveys the design, synthesis and application of molecularly imprinted polymers (MIPs) in this field, focusing on the templating of androgenous anabolic steroids (AASs), as the most commonly abused substances, but also other WADA prohibited substances. Commentary on the application of these materials in detection, clean-up and sensing is offered, alongside views on the future of imprinting in this field.
Collapse
Affiliation(s)
- Rachel A Hand
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| | - Elena Piletska
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Thomas Bassindale
- Department of Chemistry and Forensic Science, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Geraint Morgan
- School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Nicholas Turner
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| |
Collapse
|
7
|
Zhao QY, Zhao HT, Yang X, Zhang H, Dong AJ, Wang J, Li B. Selective recognition and fast enrichment of anthocyanins by dummy molecularly imprinted magnetic nanoparticles. J Chromatogr A 2018; 1572:9-19. [DOI: 10.1016/j.chroma.2018.08.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/25/2018] [Accepted: 08/12/2018] [Indexed: 02/04/2023]
|
8
|
Busato M, Distefano R, Bates F, Karim K, Bossi AM, López Vilariño JM, Piletsky S, Bombieri N, Giorgetti A. MIRATE: MIps RATional dEsign Science Gateway. J Integr Bioinform 2018; 15:/j/jib.ahead-of-print/jib-2017-0075/jib-2017-0075.xml. [PMID: 29897885 PMCID: PMC6348745 DOI: 10.1515/jib-2017-0075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/09/2018] [Indexed: 11/15/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) are high affinity robust synthetic receptors, which can be optimally synthesized and manufactured more economically than their biological equivalents (i.e. antibody). In MIPs production, rational design based on molecular modeling is a commonly employed technique. This mostly aids in (i) virtual screening of functional monomers (FMs), (ii) optimization of monomer-template ratio, and (iii) selectivity analysis. We present MIRATE, an integrated science gateway for the intelligent design of MIPs. By combining and adapting multiple state-of-the-art bioinformatics tools into automated and innovative pipelines, MIRATE guides the user through the entire process of MIPs' design. The platform allows the user to fully customize each stage involved in the MIPs' design, with the main goal to support the synthesis in the wet-laboratory. Availability: MIRATE is freely accessible with no login requirement at http://mirate.di.univr.it/. All major browsers are supported.
Collapse
Affiliation(s)
- Mirko Busato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- Mirko Busato and Rosario Distefano contributed equally to this work
| | - Rosario Distefano
- Department Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- Mirko Busato and Rosario Distefano contributed equally to this work
| | - Ferdia Bates
- Institute of Technological Investigations, University of Coruña (UDC), Campus Esteiro, Ferrol 15402, Spain
| | - Kal Karim
- Leicester Biotechnology Group, Department of Chemistry, University of Leicester, LE1 7RH, Leicester, UK
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - José Manuel López Vilariño
- Institute of Technological Investigations, University of Coruña (UDC), Campus Esteiro, Ferrol 15402, Spain
| | - Sergey Piletsky
- Leicester Biotechnology Group, Department of Chemistry, University of Leicester, LE1 7RH, Leicester, UK
| | - Nicola Bombieri
- Department Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alejandro Giorgetti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
9
|
Liu J, Wang Y, Tang S, Gao Q, Jin R. Theoretical guidance for experimental research of the dicyandiamide and methacrylic acid molecular imprinted polymer. NEW J CHEM 2017. [DOI: 10.1039/c7nj00207f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DCD-MIPs displayed good adsorption properties to DCD, which can be applied to the separation and detection of DCD.
Collapse
Affiliation(s)
- Junbo Liu
- College of Resources and Environment
- Jilin Agricultural University
- Changchun 130118
- China
| | - Yan Wang
- Department of Resources Engineering
- Guangxi Modern Polytechnic College
- China
| | - Shanshan Tang
- College of Resources and Environment
- Jilin Agricultural University
- Changchun 130118
- China
| | - Qian Gao
- College of Resources and Environment
- Jilin Agricultural University
- Changchun 130118
- China
| | - Ruifa Jin
- College of Chemistry and Chemical Engineering
- Chifeng University
- Chifeng
- China
| |
Collapse
|
10
|
Study on Dicyandiamide-Imprinted Polymers with Computer-Aided Design. Int J Mol Sci 2016; 17:ijms17111750. [PMID: 27792186 PMCID: PMC5133776 DOI: 10.3390/ijms17111750] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 01/05/2023] Open
Abstract
With the aid of theoretical calculations, a series of molecularly imprinted polymers (MIPs) were designed and prepared for the recognition of dicyandiamide (DCD) via precipitation polymerization using acetonitrile as the solvent at 333 K. On the basis of the long-range correction method of M062X/6-31G(d,p), we simulated the bonding sites, bonding situations, binding energies, imprinted molar ratios, and the mechanisms of interaction between DCD and the functional monomers. Among acrylamide (AM), N,N’-methylenebisacrylamide (MBA), itaconic acid (IA), and methacrylic acid (MAA), MAA was confirmed as the best functional monomer, because the strongest interaction (the maximum number of hydrogen bonds and the lowest binding energy) occurs between DCD and MAA, when the optimal molar ratios for DCD to the functional monomers were used, respectively. Additionally, pentaerythritol triacrylate (PETA) was confirmed to be the best cross-linker among divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), trimethylolpropane trimethylacrylate (TRIM), and PETA. This is due to the facts that the weakest interaction (the highest binding energy) occurs between PETA and DCD, and the strongest interaction (the lowest binding energy) occurs between PETA and MAA. Depending on the results of theoretical calculations, a series of MIPs were prepared. Among them, the ones prepared using DCD, MAA, and PETA as the template, the functional monomer, and the cross-linker, respectively, exhibited the highest adsorption capacity for DCD. The apparent maximum absorption quantity of DCD on the MIP was 17.45 mg/g.
Collapse
|
11
|
Cowen T, Karim K, Piletsky S. Computational approaches in the design of synthetic receptors – A review. Anal Chim Acta 2016; 936:62-74. [DOI: 10.1016/j.aca.2016.07.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023]
|
12
|
Liu H, Gan N, Chen Y, Ding Q, Huang J, Lin S, Cao Y, Li T. Novel method for the rapid and specific extraction of multiple β
2
‐agonist residues in food by tailor‐made Monolith‐MIPs extraction disks and detection by gas chromatography with mass spectrometry. J Sep Sci 2016; 39:3578-85. [DOI: 10.1002/jssc.201600479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/18/2016] [Accepted: 07/13/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Haibo Liu
- Faculty of Materials Science and Chemical EngineeringNingbo University Ningbo China
| | - Ning Gan
- Faculty of Materials Science and Chemical EngineeringNingbo University Ningbo China
| | - Yinji Chen
- Department of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and SafetyNanjing University of Finance and Economics Nanjing China
| | - Qingqing Ding
- Faculty of Materials Science and Chemical EngineeringNingbo University Ningbo China
| | - Jie Huang
- Faculty of Marine ScienceNingbo University Ningbo China
| | - Saichai Lin
- Faculty of Materials Science and Chemical EngineeringNingbo University Ningbo China
| | - Yuting Cao
- Faculty of Materials Science and Chemical EngineeringNingbo University Ningbo China
| | - Tianhua Li
- Faculty of Materials Science and Chemical EngineeringNingbo University Ningbo China
| |
Collapse
|
13
|
Greibrokk T. Molecular Imprinting in Separation Science. J Sep Sci 2016; 39:815-7. [DOI: 10.1002/jssc.201670054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/18/2016] [Accepted: 02/14/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Tyge Greibrokk
- Department of Chemistry; University of Oslo; Oslo Norway
| |
Collapse
|
14
|
|
15
|
Pardeshi S, Singh SK. Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. RSC Adv 2016. [DOI: 10.1039/c6ra02784a] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Minireview on recent advances of application of MIPs prepared by precipitation polymerization for recognition of target analytes in complex matrices.
Collapse
Affiliation(s)
- Sushma Pardeshi
- Department of Forensic Chemistry
- Institute of Forensic Science
- Nagpur-440001
- India
| | - Sunit Kumar Singh
- Environmental Materials Division
- CSIR-National Environmental Engineering and Research Institute
- Nagpur-440020
- India
| |
Collapse
|
16
|
Мuzyka K, Piletsky S, Zhikol O, Shishkina S. Theoretical quantum mechanical based studies of melamine – monomers interaction in pre-polymerisation phase. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/22243682.2015.1103664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Dorkó Z, Szakolczai A, Verbić T, Horvai G. Binding capacity of molecularly imprinted polymers and their nonimprinted analogs. J Sep Sci 2015; 38:4240-7. [DOI: 10.1002/jssc.201500874] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Zsanett Dorkó
- Department of Inorganic and Analytical Chemistry; Budapest University of Technology and Economics; Budapest Hungary
- MTA-BME Research Group of Technical Analytical Chemistry; Budapest Hungary
| | - Anett Szakolczai
- Department of Inorganic and Analytical Chemistry; Budapest University of Technology and Economics; Budapest Hungary
| | - Tatjana Verbić
- Faculty of Chemistry; University of Belgrade; Belgrade Serbia
| | - George Horvai
- Department of Inorganic and Analytical Chemistry; Budapest University of Technology and Economics; Budapest Hungary
- MTA-BME Research Group of Technical Analytical Chemistry; Budapest Hungary
| |
Collapse
|
18
|
Liu JB, Wang Y, Su TT, Li B, Tang SS, Jin RF. Theoretical and experimental studies on the performances of barbital-imprinted systems. J Sep Sci 2015; 38:4105-10. [DOI: 10.1002/jssc.201500891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/14/2015] [Accepted: 09/19/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Jun-Bo Liu
- College of Resource and Environmental Science; Jilin Agricultural University; Changchun China
| | - Yan Wang
- College of Resource and Environmental Science; Jilin Agricultural University; Changchun China
| | - Ting-Ting Su
- College of Resource and Environmental Science; Jilin Agricultural University; Changchun China
| | - Bo Li
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering; Hebei United University; Tangshan Hebei China
| | - Shan-Shan Tang
- College of Resource and Environmental Science; Jilin Agricultural University; Changchun China
| | - Rui-Fa Jin
- College of Chemistry and Chemical Engineering; Chifeng University; Chifeng China
| |
Collapse
|
19
|
Optimization of enrofloxacin-imprinted polymers by computer-aided design. J Mol Model 2015; 21:290. [DOI: 10.1007/s00894-015-2836-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
|
20
|
Wang Y, Liu JB, Tang SS, Jin RF. Preparation of melamine molecularly imprinted polymer by computer-aided design. J Sep Sci 2015; 38:2647-54. [DOI: 10.1002/jssc.201500375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Yan Wang
- College of Resource and Environmental Science; Jilin Agricultural University; Changchun China
| | - Jun-Bo Liu
- College of Resource and Environmental Science; Jilin Agricultural University; Changchun China
| | - Shan-Shan Tang
- College of Resource and Environmental Science; Jilin Agricultural University; Changchun China
| | - Rui-Fa Jin
- College of Chemistry and Chemical Engineering; Chifeng University; Chifeng China
| |
Collapse
|