1
|
A perspective on enantioselective chromatography by comparing ultra-high performance supercritical fluid chromatography and normal-phase liquid chromatography through the use of a Pirkle-type stationary phase. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Underwood T, Hindley S, Knaggs A, White C. Synthetic chemistry screening for robust analysis and purification from discovery through to development. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
3
|
Losacco GL, Wang H, Haidar Ahmad IA, DaSilva J, Makarov AA, Mangion I, Gasparrini F, Lämmerhofer M, Armstrong DW, Regalado EL. Enantioselective UHPLC Screening Combined with In Silico Modeling for Streamlined Development of Ultrafast Enantiopurity Assays. Anal Chem 2021; 94:1804-1812. [PMID: 34931812 DOI: 10.1021/acs.analchem.1c04585] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enantioselective chromatography has been the preferred technique for the determination of enantiomeric excess across academia and industry. Although sequential multicolumn enantioselective supercritical fluid chromatography screenings are widespread, access to automated ultra-high-performance liquid chromatography (UHPLC) platforms using state-of-the-art small particle size chiral stationary phases (CSPs) is an underdeveloped area. Herein, we introduce a multicolumn UHPLC screening workflow capable of combining 14 columns (packed with sub-2 μm fully porous and sub-3 μm superficially porous particles) with nine mobile phase eluent choices. This automated setup operates under a vast selection of reversed-phase liquid chromatography, hydrophilic interaction liquid chromatography, polar-organic mode, and polar-ionic mode conditions with minimal manual intervention and high success rate. Examples of highly efficient enantioseparations are illustrated from the integration of chiral screening conditions and computer-assisted modeling. Furthermore, we describe the nuances of in silico method development for chiral separations via second-degree polynomial regression fit using LC simulator (ACD/Labs) software. The retention models were found to be very accurate for chiral resolution of single and multicomponent mixtures of enantiomeric species across different types of CSPs, with differences between experimental and simulated retention times of less than 0.5%. Finally, we illustrate how this approach lays the foundation for a streamlined development of ultrafast enantioseparations applied to high-throughput enantiopurity analysis and its use in the second dimension of two-dimensional liquid chromatography experiments.
Collapse
Affiliation(s)
- Gioacchino Luca Losacco
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Imad A Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jimmy DaSilva
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Alexey A Makarov
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ian Mangion
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Francesco Gasparrini
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Daniel W Armstrong
- Department of Chemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
4
|
Losacco GL, Veuthey JL, Guillarme D. Metamorphosis of supercritical fluid chromatography: A viable tool for the analysis of polar compounds? Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116304] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Hicks MB, Tong W, Kowalski J, Purohit AK, DaSilva J, Regalado EL. Advanced reaction monitoring of pharmaceutical processes enabled with sub/supercritical fluid chromatography. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Fast enantiomeric separation of amino acids using liquid chromatography/mass spectrometry on a chiral crown ether stationary phase. J Biosci Bioeng 2020; 130:437-442. [PMID: 32616382 DOI: 10.1016/j.jbiosc.2020.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022]
Abstract
Fast enantiomeric separation of amino acids was studied by liquid chromatography/mass spectrometry (LC/MS) on a chiral crown ether stationary phase. A chiral crown ether bonded silica column (3 mm internal diameter (i.d.), 5 cm long) packed with 3 μm particles was employed instead of a 15 cm column packed with 5 μm particles used in our previous study. In addition, the extra-column variance, becoming more serious for smaller columns, was reduced by replacing 0.127 mm i.d. post-column tubes with shorter, smaller-diameter (0.0635 mm i.d.) tubes. The results demonstrated the benefits of using shorter columns packed with smaller particles and the reduction of the extra-column band broadening for fast enantiomeric separation. Finally, the enantiomeric separation of 18 pairs of proteinogenic amino acids was achieved within 2 min with a resolution (Rs) > 1.5 for each pair using an isocratic mobile phase of acetonitrile/water/trifluoroacetic acid (ACN/W/TFA) = 96/4/0.5, and a flow rate 1.2 mL/min at 30°C. This is the highest throughput method for simultaneous chiral separation of all proteinogenic amino acids except proline to date.
Collapse
|
7
|
Mazzoccanti G, Manetto S, Ricci A, Cabri W, Orlandin A, Catani M, Felletti S, Cavazzini A, Ye M, Ritchie H, Villani C, Gasparrini F. High-throughput enantioseparation of Nα-fluorenylmethoxycarbonyl proteinogenic amino acids through fast chiral chromatography on zwitterionic-teicoplanin stationary phases. J Chromatogr A 2020; 1624:461235. [PMID: 32540075 DOI: 10.1016/j.chroma.2020.461235] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Abstract
In this study, 31 racemates of Nα-FMOC (fluorenylmethoxycarbonyl) amino acids (AAs) with different chemico-physical characteristics (neutral nonpolar, neutral polar, acidic and basic) have been successfully resolved in fast enantioselective chromatography on recently-developed zwitterionic-teicoplanin chiral stationary phases (CSPs). The CSPs were prepared by covalently bonding the teicoplanin selector on fully-porous particles of narrow dispersion particle-size distribution (particle diameter 1.9 µm) and superficially-porous particles (2.0 µm). Both the zwitterionic-teicoplanin CSPs have proved to be ideal media for the separation of this important class of compounds. In particular, the zwitterionic CSP prepared on superficially-porous particles exhibited superior enantioselectivity and resolution, compared to that made of fully porous particles, in virtue of more favorable thermodynamics. The zwitterionic nature of these CSPs allowed avoiding the annoying effect of Donnan's exclusion of enantiomers from the stationary phase. This effect, on the opposite, was frequently observed on a commercial teicoplanin CSP (Teicoshell) employed for comparative purposes. Noticeably, on the zwitterionic-teicoplanin CSPs, by using either acetonitrile- or methanol-rich mobile phases (MPs), it was possible to favor speed over enantioresolution and vice versa. This work gives further replies to the request for rapid determination of enantiomeric excess of Nα-FMOC proteinogenic (and non-proteinogenic) AAs, typically used as preferred chiral synthons in the solid-phase synthesis of therapeutic peptides.
Collapse
Affiliation(s)
- Giulia Mazzoccanti
- Department of Pharmaceutical Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy.
| | - Simone Manetto
- Department of Pharmaceutical Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | - Antonio Ricci
- Fresenius Kabi iPSUM, piazza Maestri del Lavoro 7, 20063, Cernusco sul Naviglio (MI), Italy
| | - Walter Cabri
- Fresenius Kabi iPSUM, piazza Maestri del Lavoro 7, 20063, Cernusco sul Naviglio (MI), Italy; Department of Chemistry, Alma Mater Studiorum-University of Bologna, via Selmi2, 40126 Bologna, Italy
| | - Andrea Orlandin
- Fresenius Kabi iPSUM, piazza Maestri del Lavoro 7, 20063, Cernusco sul Naviglio (MI), Italy
| | - Martina Catani
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Simona Felletti
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Micheal Ye
- Sigma-Aldrich/ Supelco, 595 North Harrison Road, Bellefonte, PA, 16823, United States
| | - Harald Ritchie
- AMT Advanced Materials Technologies Inc., Wilmington, Delaware, USA
| | - Claudio Villani
- Department of Pharmaceutical Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | - Francesco Gasparrini
- Department of Pharmaceutical Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
8
|
|
9
|
Kaplitz AS, Kresge GA, Selover B, Horvat L, Franklin EG, Godinho JM, Grinias KM, Foster SW, Davis JJ, Grinias JP. High-Throughput and Ultrafast Liquid Chromatography. Anal Chem 2019; 92:67-84. [DOI: 10.1021/acs.analchem.9b04713] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexander S. Kaplitz
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Glenn A. Kresge
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Benjamin Selover
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Leah Horvat
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | | | - Justin M. Godinho
- Advanced Materials Technology, Inc., Wilmington, Delaware 19810, United States
| | - Kaitlin M. Grinias
- Analytical Platforms & Platform Modernization, GlaxoSmithKline, Upper Providence, Collegeville, Pennsylvania 19426, United States
| | - Samuel W. Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Joshua J. Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - James P. Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
10
|
Kohout M, Hovorka Š, Herciková J, Wilk M, Sysel P, Izák P, Bartůněk V, von Baeckmann C, Pícha J, Frühauf P. Evaluation of silica from different vendors as the solid support of anion-exchange chiral stationary phases by means of preferential sorption and liquid chromatography. J Sep Sci 2019; 42:3653-3661. [PMID: 31625277 DOI: 10.1002/jssc.201900731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 11/11/2022]
Abstract
Chromatographic performance of a chiral stationary phase is significantly influenced by the employed solid support. Properties of the most commonly used support, silica particles, such as size and size distribution, and pore size are of utmost importance for both superficially porous particles and fully porous particles. In this work, we have focused on evaluation of fully porous particles from three different vendors as solid supports for a brush-type chiral stationary phase based on 9-O-tert-butylcarbamoyl quinidine. We have prepared corresponding stationary phases under identical experimental conditions and determined the parameters of the modified silica by physisorption measurements and scanning electron microscopy. Enantiorecognition properties of the chiral stationary phases have been studied using preferential sorption experiments. The same material was slurry-packed into chromatographic columns and the chromatographic properties have been evaluated in liquid chromatography. We show that preferential sorption can provide valuable information about the influence of the pore size and total pore volume on the interaction of analytes of different size with the chirally-modified silica surface. The data can be used to understand differences observed in chromatographic evaluation of the chiral stationary phases. The combination of preferential sorption and liquid chromatography separation can provide detailed information on new chiral stationary phases.
Collapse
Affiliation(s)
- Michal Kohout
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Štěpán Hovorka
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Jana Herciková
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Maciej Wilk
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Petr Sysel
- Department of Polymers, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Izák
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic.,Institute of Chemical Processes Fundamentals, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Bartůněk
- Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Cornelia von Baeckmann
- Department of Inorganic Chemistry-Functional Materials, University of Vienna, Vienna, Austria
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Frühauf
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Xiang P, Yang Y, Zhao Z, Chen M, Liu S. Ultrafast Gradient Separation with Narrow Open Tubular Liquid Chromatography. Anal Chem 2019; 91:10738-10743. [PMID: 31288520 DOI: 10.1021/acs.analchem.9b02190] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Separation speed and resolution are two important figures of merit in chromatography. Often, one gains the speed at the cost of the resolution, and vice versa. Scientists have employed short-packed columns for ultrafast separations but encountered challenges such as limited mobile phase velocity, extra-column effect caused band broadening, and column packing difficulty. We have recently demonstrated ultrahigh resolutions of narrow open tubular liquid chromatography (NOTLC); this allows us to trade some of the resolution for speed. In this work, we explored NOTLC for ultrafast LC separations. We used a 2.7 cm (effective length) narrow open tubular (NOT) column and showed a baseline separation of 6 amino acids in less than 700 ms. Ways to further increase the speed were discussed. Using short narrow open tubular (NOT) columns to perform ultrafast separation we overcame the challenges from using short packed columns. To demonstrate the feasibility of using this ultrafast separation technique for practical applications, we separated complex protein digests; peptides were nicely resolved in ∼1 min.
Collapse
Affiliation(s)
- Piliang Xiang
- Department of Chemistry and Biochemistry , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Yu Yang
- Department of Chemistry and Biochemistry , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Zhitao Zhao
- Department of Chemistry and Biochemistry , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Mingli Chen
- Department of Chemistry , Northeastern University , Shenyang 110819 , P. R. China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| |
Collapse
|
12
|
Roy D, Armstrong DW. Fast super/subcritical fluid chromatographic enantioseparations on superficially porous particles bonded with broad selectivity chiral selectors relative to fully porous particles. J Chromatogr A 2019; 1605:360339. [PMID: 31350029 DOI: 10.1016/j.chroma.2019.06.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022]
Abstract
Superficially porous particles (SPPs) have shown advantages in enantiomeric separations in HPLC by conserving selectivity while providing higher efficiency separations with significantly reduced analysis times. The question arises as to whether the same advantages can be found to the same extent in super/subcritical fluid chromatography. In this work, the low viscosity advantage of carbon dioxide/MeOH mixtures is coupled with high-efficiency 2.7 μm superficially porous particles for enantiomeric separations. Given the fact that the viscosity of the mobile phase is typically ten times lower than liquid mobile phases it is possible to use flow rates as high as 14 mL/min on 5 cm packed columns. Superficially porous particles (SPPs) were grafted with teicoplanin (TeicoShell), a chemically modified macrocyclic glycopeptide (NicoShell), vancomycin (VancoShell), and isopropyl derivatized cyclofructan-6 (LarihcShell-P). One hundred chiral analytes were separated in a very short time frame, as little as 0.2 min (13 s). Even shorter separations can be obtained with advances in SFC instrumentation. The LarihcShell-P is the only chiral crown ether-based selector which showed high selectivity for primary amines. The Teicoshell column offered unique separations for acidic and neutral analytes. The NicoShell and the VancoShell were useful in separating amine (secondary and tertiary) containing pharmaceutical drugs and controlled substances. By chemically modifying a macrocyclic glycopeptide (NicoShell) we report the first enantiomeric separation of nicotine under SFC conditions within 3 min with a resolution of >3. Additionally, van Deemter plots are constructed comparing the fully porous particles and superficially porous particles bonded with the same chiral selectors. In toto the SPP advantages also were found for SFC. However instrumental shortcomings involving extra column effects and pressure limitations need to be addressed by instrument manufacturers to realize the full advantages of SPPs and other smaller particle supports.
Collapse
Affiliation(s)
- Daipayan Roy
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, TX, United States
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, TX, United States.
| |
Collapse
|
13
|
Regalado EL, Haidar Ahmad IA, Bennett R, D’Atri V, Makarov AA, Humphrey GR, Mangion I, Guillarme D. The Emergence of Universal Chromatographic Methods in the Research and Development of New Drug Substances. Acc Chem Res 2019; 52:1990-2002. [PMID: 31198042 DOI: 10.1021/acs.accounts.9b00068] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Manufacturing process development of new drug substances in the pharmaceutical industry combines numerous chemical challenges beyond the efficient synthesis of complex molecules. Optimization of a synthetic route involves the screening of multiple reaction variables with a desired outcome that not only depends on an increased product yield but is also highly influenced by the removal efficacy of residual chemicals and reaction byproducts during the subsequent synthetic route. Consequently, organic chemists must survey a wide array of synthetic variables to develop a highly productive, green, and cost-effective manufacturing process. The time constraints of developing robust quantitative methods prior to each processing step can easily lead to sample analysis becoming a bottleneck in synthetic route development. In this regard, conventional "on demand" analytical method development and optimization approaches, traditionally used for guiding synthetic chemistry efforts, become unsustainable. This Account introduces recent efforts to address the aforementioned challenges through the development and implementation of generic or more universal chromatographic methods that can cover a broad spectrum of targeted compound classes. Such generic methods require significant resolving power to enable baseline resolution of multicomponent mixtures in a single experimental run without additional method customization but must be simple enough to allow for routine use by chemists, chemical engineers and other researchers with little experience in chromatographic method development. These powerful analytical methodologies are often employed to minimize the time spent developing new analytical assays, while also facilitating method transfer to manufacturing facilities and application in regulatory settings. Diverse examples of universal and fit-for-purpose analytical procedures are presented herein, illustrating the power of modern readily available analytical technology for streamlining the development of new drug substances in organic chemistry laboratories across both academic and industrial sectors. With recent advances in analytical instrumentation and column technologies, universal chromatographic methods are quickly becoming a proactive and effective strategy to accelerate the discovery and implementation of new synthetic methodologies, especially but not limited to laboratories where the synthetic process route is undergoing rapid change and optimization. Targets of these generic methods include analysis of organic solvents, acid and basic additives, nucleotide species, palladium scavengers, impurity mapping, enantiopurity, synthetic intermediates, active pharmaceutical ingredients and their counterions, dehalogenation byproducts, and mixtures of organohalogenated pharmaceuticals, among other chemicals used or formed in process chemistry reactions.
Collapse
Affiliation(s)
- Erik L. Regalado
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Imad A. Haidar Ahmad
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Raffeal Bennett
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Alexey A. Makarov
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Guy R. Humphrey
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ian Mangion
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
14
|
Cheng L, Cai J, Fu Q, Ke Y. Efficient preparative separation of 6-(4-aminophenyl)-5-methyl-4, 5-dihydro-3(2H)-pyridazinone enantiomers on polysaccharide-based stationary phases in polar organic solvent chromatography and supercritical fluid chromatography. J Sep Sci 2019; 42:2482-2490. [PMID: 31081221 DOI: 10.1002/jssc.201900253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/08/2023]
Abstract
6-(4-Aminophenyl)-5-methyl-4,5-dihydro-3(2H)-pyridazinone is a key synthetic intermediate for cardiotonic agent levosimendan. Very few studies address the use of chiral stationary phases in chromatography for the enantioseparation of this intermediate. This study presents two efficient preparative methods for the isolation of (R)(-)-6-(4-aminophenyl)-5-methyl-4,5-dihydro-3(2H)-pyridazinone in polar organic solvent chromatography and supercritical fluid chromatography using polysaccharide-based chiral stationary phases and volatile organic mobile phases without additives in isocratic mode. Under optimum conditions, Chiralcel OJ column showed the best performance (α = 1.71, Rs = 5.47) in polar organic solvent chromatography, while Chiralpak AS column exhibited remarkable separations (α = 1.81 and Rs = 6.51) in supercritical fluid chromatography with an opposite enantiomer elution order. Considering the sample solubility, runtime and solvent cost, the preparations were carried out on Chiralcel OJ column and Chiralpak AS column (250 × 20 mm i.d.; 10 µm) in polar organic mode and supercritical fluid chromatography mode with methanol and CO2 /methanol as mobile phases, respectively. By utilizing the advantages of chromatographic techniques and polysaccharide-based chiral stationary phases, this work provides two methods for the fast and economic preparation of (R)(-)-6-(4-aminophenyl)-5-methyl-4,5-dihydro-3(2H)-pyridazinone, which are suitable for the pharmaceutical industry.
Collapse
Affiliation(s)
- Lingping Cheng
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Jianfeng Cai
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
15
|
Heiland JJ, Geissler D, Piendl SK, Warias R, Belder D. Supercritical-Fluid Chromatography On-Chip with Two-Photon-Excited-Fluorescence Detection for High-Speed Chiral Separations. Anal Chem 2019; 91:6134-6140. [DOI: 10.1021/acs.analchem.9b00726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Josef J. Heiland
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - David Geissler
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sebastian K. Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Kozlov O, Kalíková K, Gondová T, Budovská M, Salayová A, Tesařová E. Fast enantioseparation of indole phytoalexins in additive free supercritical fluid chromatography. J Chromatogr A 2019; 1596:209-216. [PMID: 30910386 DOI: 10.1016/j.chroma.2019.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 11/26/2022]
Abstract
A series of chiral indole phytoalexins with potential anticancer and antimicrobial activity were enantioseparated in supercritical fluid chromatography. Two polysaccharide-based chiral stationary phases composed of tris-(3,5-dimethylphenylcarbamate) derivatives of amylose or cellulose coated on 2.5 μm silica particles were successfully used. The influences of the polysaccharide backbone, co-solvent type and co-solvent content in the mobile phase on retention, enantioselectivity and enantioresolution of indole phytoalexins were investigated. Fast baseline separations were achieved for 26 from 27 tested compounds. Amylose-based chiral stationary phase provided higher number of baseline resolutions of the indole phytoalexins than the cellulose-based one. However, certain complementary enantioresolution results towards the studied compounds were observed between the investigated columns. The relationship between structure of the indole phytoalexins and their chromatographic behavior in supercritical fluid chromatography was discussed.
Collapse
Affiliation(s)
- Oleksandr Kozlov
- Department of Analytical Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague, Czech Republic.
| | - Taťána Gondová
- Department of Analytical Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Mariana Budovská
- Department of Organic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Aneta Salayová
- Department of Organic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic; Department of Chemistry, Biochemistry and Biophysics, Institute of Pharmaceutical Chemistry, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovak Republic
| | - Eva Tesařová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague, Czech Republic
| |
Collapse
|
17
|
Dascalu AE, Ghinet A, Billamboz M, Lipka E. Performance comparison of chlorinated chiral stationary phases in supercritical fluid chromatography for separation of selected pyrrolidone derivatives. J Pharm Anal 2019; 9:248-253. [PMID: 31452962 PMCID: PMC6702407 DOI: 10.1016/j.jpha.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/23/2019] [Accepted: 03/04/2019] [Indexed: 11/12/2022] Open
Abstract
The effects of two chlorinated chiral stationary phases, namely, Lux Cellulose-2 and Lux i-Cellulose-5, flow-rate, percentage of co-solvent and chemical structures of the compounds on retention and resolution were studied within this article. In this work a backpressure of 150 bar, a temperature of 40 °C and 10% of methanol as co-solvent were chosen as operating conditions. The optimum flow-rate was 2 mL/min. The percentage of co-solvent was studied between 7.5% and 15%. We have observed that 15% of methanol gave the best results for most of the compounds. For all the derivatives, the Lux Cellulose-2 provided better resolutions going from 1.50 to 3.59 compared with Lux i-Cellulose-5.
Collapse
Affiliation(s)
- Anca-Elena Dascalu
- Univ. Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France.,Ecole des Hautes Etudes d'Ingénieur (HEI), Laboratoire de Pharmacochimie, 13 rue de Toul, F-59046 Lille, France.,UFR Pharmacie, Laboratoire de Chimie Analytique, BP 83, F-59006 Lille, France.,'Alexandru Ioan Cuza' University of Iasi, Faculty of Chemistry, Bd. Carol I nr. 11, 700506 Iasi, Romania
| | - Alina Ghinet
- Univ. Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France.,Ecole des Hautes Etudes d'Ingénieur (HEI), Laboratoire de Pharmacochimie, 13 rue de Toul, F-59046 Lille, France.,'Alexandru Ioan Cuza' University of Iasi, Faculty of Chemistry, Bd. Carol I nr. 11, 700506 Iasi, Romania
| | - Muriel Billamboz
- Univ. Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France.,Ecole des Hautes Etudes d'Ingénieur (HEI), Laboratoire de Pharmacochimie, 13 rue de Toul, F-59046 Lille, France
| | - Emmanuelle Lipka
- Univ. Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France.,UFR Pharmacie, Laboratoire de Chimie Analytique, BP 83, F-59006 Lille, France
| |
Collapse
|
18
|
Doing more with less: Evaluation of the use of high linear velocities in preparative supercritical fluid chromatography. J Chromatogr A 2019; 1595:199-206. [PMID: 30871755 DOI: 10.1016/j.chroma.2019.02.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/22/2019] [Accepted: 02/21/2019] [Indexed: 11/21/2022]
Abstract
The evaluation of higher than typical linear velocities is discussed for supercritical fluid chromatographic purifications on the preparative scale. SFC separation efficiency suffers far less at high linear velocities than HPLC by the rapid mass transfer of analytes carried by compressed CO2 through the stationary phase. The technique is discussed using chiral test compounds and columns. In many cases, running at high linear velocities can yield significant time savings and decreased consumption of mobile phase solvent, while also lowering energy consumption. Within the practical limitations of commercial instrumentation, using 20 μm particles can aid in achieving higher linear velocities not attainable with smaller 5 μm particles, particularly when running with high percentages of organic co-solvent. Use of larger particles for the stationary phase also lowers the associated column cost. These benefits can yield an overall purification process that is more productive and environmentally friendly.
Collapse
|
19
|
Bennett R, Biba M, Liu J, Haidar Ahmad IA, Hicks MB, Regalado EL. Enhanced fluidity liquid chromatography: A guide to scaling up from analytical to preparative separations. J Chromatogr A 2019; 1595:190-198. [PMID: 30803788 DOI: 10.1016/j.chroma.2019.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
The evolution of supercritical fluid chromatography (SFC) instrumentation, improved detection capability, and expanded modifier range has led to extending the reach of SFC to the analysis of a broader spectrum of analytes beyond enantioselective separations. However, preparative SFC has yet to see the same technological revitalization, especially in regards to the purification of highly polar analytes. Enhanced fluidity liquid chromatography (EFLC) has been demonstrated as one of the ways to extend the applicable range of SFC instrumentation to highly polar analytes such as proteins, carbohydrates, and nucleotides. Despite recent applications of EFLC for challenging mixtures of hydrophilic metabolites and analogs, its viability in preparative purification, which is of great importance to the pharmaceutical industry, remains unknown. Herein, multiple chromatographic parameters that are critical to achieve feasible EFLC purification methods were investigated, including system pressure as a function of modifier composition (for several MeOH:H2O ratios), effect of diluent injection conditions on peak shape, and optimization of mass load with diluent composition. The usage of 50% acetonitrile or methanol diluents provided the most volumetric loading capacity. In the case of sucrose, leveraging higher analyte solubility in water proved to be more favorable than the volumetric loading capacity of diluents with higher organic content. In fact, an 80 mg injection of sucrose was possible on a 2 cm preparative HILIC column with minimal peak shape degradation. The combined information led to the successful demonstration of EFLC for the preparative separation of sugars using readily available MS-directed SFC instrumentation.
Collapse
Affiliation(s)
- Raffeal Bennett
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Mirlinda Biba
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Jinchu Liu
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Imad A Haidar Ahmad
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Michael B Hicks
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Erik L Regalado
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
20
|
Welch CJ. High throughput analysis enables high throughput experimentation in pharmaceutical process research. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00234k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High throughput experimentation has become widely used in the discovery and development of new medicines.
Collapse
|
21
|
Recent Achievements and Future Challenges in Supercritical Fluid Chromatography for the Enantioselective Separation of Chiral Pharmaceuticals. Chromatographia 2018. [DOI: 10.1007/s10337-018-3606-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Ismail OH, Losacco GL, Mazzoccanti G, Ciogli A, Villani C, Catani M, Pasti L, Anderson S, Cavazzini A, Gasparrini F. Unmatched Kinetic Performance in Enantioselective Supercritical Fluid Chromatography by Combining Latest Generation Whelk-O1 Chiral Stationary Phases with a Low-Dispersion in-House Modified Equipment. Anal Chem 2018; 90:10828-10836. [DOI: 10.1021/acs.analchem.8b01907] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Omar H. Ismail
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Gioacchino L. Losacco
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel Servet, 1, 1211 Geneva, 4, Switzerland
| | - Giulia Mazzoccanti
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Alessia Ciogli
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Claudio Villani
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Martina Catani
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Luisa Pasti
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Scott Anderson
- Regis Technologies, Inc., 8210 Austin Avenue, Morton Grove, Illinois 60053, United States
| | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Francesco Gasparrini
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
23
|
Current trends in supercritical fluid chromatography. Anal Bioanal Chem 2018; 410:6441-6457. [DOI: 10.1007/s00216-018-1267-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/18/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
|
24
|
Pirrone GF, Mathew RM, Makarov AA, Bernardoni F, Klapars A, Hartman R, Limanto J, Regalado EL. Supercritical fluid chromatography-photodiode array detection-electrospray ionization mass spectrometry as a framework for impurity fate mapping in the development and manufacture of drug substances. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1080:42-49. [DOI: 10.1016/j.jchromb.2018.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
|
25
|
Patel DC, Wahab MF, O'Haver TC, Armstrong DW. Separations at the Speed of Sensors. Anal Chem 2018; 90:3349-3356. [PMID: 29437379 DOI: 10.1021/acs.analchem.7b04944] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The virtue of chemical sensors is speed and analyte specificity. The response time to generate an analytical signal typically varies from ∼1 to 20 s, and they are generally limited to a single analyte. Chemical sensors are significantly affected by multiple interferents, matrix effects, temperature, and can vary widely in sensitivity depending on the sensor format. Separation-based analyses remove matrix effects and interferents and are compatible with multiple analytes. However, the speed of such analyses has not been commensurate with traditional sensors until now. Beds of very small size with optimal geometry, containing core-shell particles of judicious immobilized selectors, can be used in an ultrahigh-flow regime, thereby providing subsecond separations of up to 10 analytes. Short polyether ether ketone lined stainless steel columns of various geometries were evaluated to determine the optimal bed geometry for subsecond analysis. Coupling these approaches provides subsecond-based detection and quantitation of multiple chiral and achiral species, including nucleotides, plant hormones, acids, amino acid derivatives, and sedatives among a variety of other compounds. The subsecond separations were reproducible with 0.9% RSD on retention times and showed consistent performance with 0.9% RSD on reduced plate height in van Deemter curves. A new powerful signal processing algorithm is proposed that can further enhance separation outputs and optical spectra without altering band areas on more complex separations such as 10 peaks under a second.
Collapse
Affiliation(s)
- Darshan C Patel
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - M Farooq Wahab
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Thomas C O'Haver
- Department of Chemistry and Biochemistry , University of Maryland at College Park , College Park , Maryland 20742 , United States
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|
26
|
Ciogli A, Ismail OH, Mazzoccanti G, Villani C, Gasparrini F. Enantioselective ultra high performance liquid and supercritical fluid chromatography: The race to the shortest chromatogram. J Sep Sci 2018; 41:1307-1318. [PMID: 29319915 DOI: 10.1002/jssc.201701406] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 11/11/2022]
Abstract
The ever-increasing need for enantiomerically pure chiral compounds has greatly expanded the number of enantioselective separation methods available for the precise and accurate measurements of the enantiomeric purity. The introduction of chiral stationary phases for liquid chromatography in the last decades has revolutionized the routine methods to determine enantiomeric purity of chiral drugs, agrochemicals, fragrances, and in general of organic and organometallic compounds. In recent years, additional efforts have been placed on faster, enantioselective analytical methods capable to fulfill the high throughput requirements of modern screening procedures. Efforts in this field, capitalizing on improved chromatographic particle technology and dedicated instrumentation, have led to highly efficient separations that are routinely completed on the seconds time scale. An overview of the recent achievements in the field of ultra-high-resolution chromatography on column packed with chiral stationary phases, both based on sub-2 μm fully porous and sub-3 μm superficially porous particles, will be given, with an emphasis on very recent studies on ultrafast chiral separations.
Collapse
Affiliation(s)
- Alessia Ciogli
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Omar H Ismail
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Giulia Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Claudio Villani
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Francesco Gasparrini
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| |
Collapse
|
27
|
Barhate CL, Lopez DA, Makarov AA, Bu X, Morris WJ, Lekhal A, Hartman R, Armstrong DW, Regalado EL. Macrocyclic glycopeptide chiral selectors bonded to core-shell particles enables enantiopurity analysis of the entire verubecestat synthetic route. J Chromatogr A 2018; 1539:87-92. [PMID: 29397980 DOI: 10.1016/j.chroma.2018.01.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/01/2023]
Abstract
Verubecestat is an inhibitor of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) being evaluated in clinical trials for the treatment of Alzheimer's disease. Synthetic route development involves diastereoselective transformations with a need for enantiomeric excess (ee) determination of each intermediate and final active pharmaceutical ingredient (API). The analytical technical package of validated methods relies on enantioselective SFC and RPLC separations using multiple 3 and 5 μm coated polysaccharide-based chiral stationary phases (CSPs) and mobile phases combinations. Evaluation of recently developed chiral columns revealed a single chiral selector (Teicoplanin) bonded to 2.7 μm core-shell particles using H3PO4 in H2O/ACN and triethylammonium acetate: methanol based eluents at different isocratic compositions allowed good enatioseparation of all verubecestat intermediates. EE determination of verubecestat is easily performed on NicoShell, another macrocyclic glycopeptide chiral selector bonded to 2.7 μm superficially porous particles. This approach enables fast and reliable enantiopurity analysis of the entire verubecestat synthetic route using only two chiral columns and mobile phases on a conventional HPLC system, simplifying technical package preparation, method validation and transfer to manufacturing facilities.
Collapse
Affiliation(s)
- Chandan L Barhate
- Department of Chemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Diego A Lopez
- Department of Chemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Alexey A Makarov
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Xiaodong Bu
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - William J Morris
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Azzeddine Lekhal
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Robert Hartman
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Daniel W Armstrong
- Department of Chemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Erik L Regalado
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
28
|
Kalíková K, Martínková M, Schmid MG, Tesařová E. Cellulose tris-(3,5-dimethylphenylcarbamate)-based chiral stationary phase for the enantioseparation of drugs in supercritical fluid chromatography: comparison with HPLC. J Sep Sci 2018; 41:1471-1478. [DOI: 10.1002/jssc.201701341] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University; Prague Czech Republic
| | - Monika Martínková
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University; Prague Czech Republic
| | - Martin G. Schmid
- Institute of Pharmaceutical Sciences; Department of Pharmaceutical Chemistry; University of Graz; Graz Austria
| | - Eva Tesařová
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University; Prague Czech Republic
| |
Collapse
|
29
|
Yan Y, Fan J, Lai Y, He J, Guo D, Zhang H, Zhang W. Efficient preparative separation of β-cypermethrin stereoisomers by supercritical fluid chromatography with a two-step combined strategy. J Sep Sci 2018; 41:1442-1449. [DOI: 10.1002/jssc.201701138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yilun Yan
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Jun Fan
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Yecai Lai
- Guangdong YanJie Pharmatech Co. Ltd; Guangzhou China
| | - Jianfeng He
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Dong Guo
- Guangdong YanJie Pharmatech Co. Ltd; Guangzhou China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
| | - Weiguang Zhang
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| |
Collapse
|
30
|
Mattrey FT, Makarov AA, Regalado EL, Bernardoni F, Figus M, Hicks MB, Zheng J, Wang L, Schafer W, Antonucci V, Hamilton SE, Zawatzky K, Welch CJ. Current challenges and future prospects in chromatographic method development for pharmaceutical research. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Welch CJ. Are We Approaching a Speed Limit for the Chromatographic Separation of Enantiomers? ACS CENTRAL SCIENCE 2017; 3:823-829. [PMID: 28852695 PMCID: PMC5571467 DOI: 10.1021/acscentsci.7b00250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 05/20/2023]
Abstract
As the speed of chromatographic enantioseparations advances to the point where the enantiomers of most chiral compounds can be resolved in less than a minute, some in less than a second, we pose the question of how this field is likely to develop over the next few years. Are we approaching a fundamental speed limit, or will further technological advances continue to deliver faster and faster separations? Are faster separations even needed for chemical research, and if so, how will they help? We herein examine this trend, investigating the barriers that currently limit speed and offering some insights into the continued evolution of fast chromatographic enantioseparations.
Collapse
|
32
|
Berger TA. Preliminary kinetic evaluation of an immobilized polysaccharide sub-2μm column using a low dispersion supercritical fluid chromatograph. J Chromatogr A 2017; 1510:82-88. [PMID: 28652002 DOI: 10.1016/j.chroma.2017.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/03/2017] [Accepted: 06/09/2017] [Indexed: 11/25/2022]
Abstract
The performance of a 3×50mm, 1.6μm dp column with an immobilized polysaccharide stationary phase (ChiralPak IA-U) was evaluated for efficiency, and pressure drop, with respect to flow rate and modifier concentration using supercritical fluid chromatography (SFC). This appears to be the first such report using such a column in SFC. A unique low dispersion (ultra-high performance) SFC was used for the evaluation. The minimum reduced plate height of 2.78, indicates that the maximum efficiency was similar to or better than coated polysaccharide columns. Selectivity was different from ChiralPak AD, with the same chiral selector, as reported by many others. At high flows and high methanol concentrations, pump pressures sometimes approached 600bar. With 5% methanol, pressure vs. flow rate was non-linear suggesting turbulent flow in the connector tubing. The optimum flow rate (Fopt) at 40% methanol was ≈0.8mL/min, where the column efficiency was highest. At 5% methanol, Fopt increased to ≈1.6mL/min, but efficiency degraded noticeably. The differences in Fopt suggests that the solute diffusion coefficients are a strong function of modifier concentration. Several sub-1min separations, including a 7.5s separation, are presented.
Collapse
Affiliation(s)
- Terry A Berger
- SFC Solutions Inc., 9435 Downing St., Englewood, FL 34224, USA.
| |
Collapse
|
33
|
Zawatzky K, Barhate CL, Regalado EL, Mann BF, Marshall N, Moore JC, Welch CJ. Overcoming "speed limits" in high throughput chromatographic analysis. J Chromatogr A 2017; 1499:211-216. [PMID: 28416217 DOI: 10.1016/j.chroma.2017.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/15/2017] [Accepted: 04/02/2017] [Indexed: 10/25/2022]
Abstract
The combination of high speed autosampler technology and ultrafast chromatographic separations enables faster high throughput analysis. With an injection cycle time of 10.6 s, MISER (Multiple Injection in a Single Experimental Run) HPLC-MS analysis of a 96 well microplate can be completed in only 17min. As chromatographic separations in the sub 5s range become increasingly common, even faster autosamplers will be needed to realize further speed improvements in high throughput LC-MS analysis. Indeed with proper hardware sampling approaches, chromatographic analysis of microplates could approach speeds of spectrophotometric plate readers while maintaining the advantage of multicomponent detection and monitoring.
Collapse
Affiliation(s)
- Kerstin Zawatzky
- Merck & Co., Inc., Process Research & Development, Rahway, NJ 07065, USA.
| | - Chandan L Barhate
- Merck & Co., Inc., Process Research & Development, Rahway, NJ 07065, USA
| | - Erik L Regalado
- Merck & Co., Inc., Process Research & Development, Rahway, NJ 07065, USA
| | - Benjamin F Mann
- Merck & Co., Inc., Process Research & Development, Rahway, NJ 07065, USA
| | - Nicholas Marshall
- Merck & Co., Inc., Process Research & Development, Rahway, NJ 07065, USA
| | - Jeffrey C Moore
- Merck & Co., Inc., Process Research & Development, Rahway, NJ 07065, USA
| | | |
Collapse
|
34
|
Barhate CL, Regalado EL, Contrella ND, Lee J, Jo J, Makarov AA, Armstrong DW, Welch CJ. Ultrafast Chiral Chromatography as the Second Dimension in Two-Dimensional Liquid Chromatography Experiments. Anal Chem 2017; 89:3545-3553. [PMID: 28192943 DOI: 10.1021/acs.analchem.6b04834] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chromatographic separation and analysis of complex mixtures of closely related species is one of the most challenging tasks in modern pharmaceutical analysis. In recent years, two-dimensional liquid chromatography (2D-LC) has become a valuable tool for improving peak capacity and selectivity. However, the relatively slow speed of chiral separations has limited the use of chiral stationary phases (CSPs) as the second dimension in 2D-LC, especially in the comprehensive mode. Realizing that the recent revolution in the field of ultrafast enantioselective chromatography could now provide significantly faster separations, we herein report an investigation into the use of ultrafast chiral chromatography as a second dimension for 2D chromatographic separations. In this study, excellent selectivity, peak shape, and repeatability were achieved by combining achiral and chiral narrow-bore columns (2.1 mm × 100 mm and 2.1 mm × 150 mm, sub-2 and 3 μm) in the first dimension with 4.6 mm × 30 mm and 4.6 mm × 50 mm columns packed with highly efficient chiral selectors (sub-2 μm fully porous and 2.7 μm fused-core particles) in the second dimension, together with the use of 0.1% phosphoric acid/acetonitrile eluents in both dimensions. Multiple achiral × chiral and chiral × chiral 2D-LC examples (single and multiple heart-cutting, high-resolution sampling, and comprehensive) using ultrafast chiral chromatography in the second dimension are successfully applied to the separation and analysis of complex mixtures of closely related pharmaceuticals and synthetic intermediates, including chiral and achiral drugs and metabolites, constitutional isomers, stereoisomers, and organohalogenated species.
Collapse
Affiliation(s)
- Chandan L Barhate
- Department of Chemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | | | | | - Joon Lee
- Agilent Technologies, Incorporated , Wilmington, Delaware 19808, United States
| | | | | | - Daniel W Armstrong
- Department of Chemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | | |
Collapse
|
35
|
Catani M, Ismail OH, Gasparrini F, Antonelli M, Pasti L, Marchetti N, Felletti S, Cavazzini A. Recent advancements and future directions of superficially porous chiral stationary phases for ultrafast high-performance enantioseparations. Analyst 2017; 142:555-566. [DOI: 10.1039/c6an02530g] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on the use of superficially porous particles (SPPs) as chiral stationary phases for ultra-high performance liquid enantioseparations.
Collapse
Affiliation(s)
- Martina Catani
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| | - Omar H. Ismail
- Department of Drug Chemistry and Technology
- “Sapienza” Università di Roma
- 00185 Roma
- Italy
| | - Francesco Gasparrini
- Department of Drug Chemistry and Technology
- “Sapienza” Università di Roma
- 00185 Roma
- Italy
| | - Michela Antonelli
- Department of Drug Chemistry and Technology
- “Sapienza” Università di Roma
- 00185 Roma
- Italy
| | - Luisa Pasti
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| | - Nicola Marchetti
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| | - Simona Felletti
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| | - Alberto Cavazzini
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| |
Collapse
|
36
|
Barhate CL, Joyce LA, Makarov AA, Zawatzky K, Bernardoni F, Schafer WA, Armstrong DW, Welch CJ, Regalado EL. Ultrafast chiral separations for high throughput enantiopurity analysis. Chem Commun (Camb) 2017; 53:509-512. [DOI: 10.1039/c6cc08512a] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ultrafast chiral chromatography enables high throughput enantiopurity analysis (over one thousand samples in an 8 h workday) for enantioselective synthesis investigations.
Collapse
Affiliation(s)
| | - Leo A. Joyce
- Process Research & Development
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | | | | | | | - Wes A. Schafer
- Process Research & Development
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | | | | | | |
Collapse
|
37
|
Berger TA. Characterizing pressure issues due to turbulent flow in tubing, in ultra-fast chiral supercritical fluid chromatography at up to 580bar. J Chromatogr A 2016; 1475:86-94. [DOI: 10.1016/j.chroma.2016.10.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
|
38
|
Chiral analysis of poor UV absorbing pharmaceuticals by supercritical fluid chromatography-charged aerosol detection. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Khater S, Lozac’h MA, Adam I, Francotte E, West C. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases. J Chromatogr A 2016; 1467:463-472. [DOI: 10.1016/j.chroma.2016.06.060] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
40
|
Patel DC, Wahab MF, Armstrong DW, Breitbach ZS. Advances in high-throughput and high-efficiency chiral liquid chromatographic separations. J Chromatogr A 2016; 1467:2-18. [DOI: 10.1016/j.chroma.2016.07.040] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023]
|
41
|
He J, Fan J, Yan Y, Chen X, Wang T, Zhang Y, Zhang W. Triticonazole enantiomers: Separation by supercritical fluid chromatography and the effect of the chromatographic conditions. J Sep Sci 2016; 39:4251-4257. [DOI: 10.1002/jssc.201600820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jianfeng He
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Jun Fan
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Yilun Yan
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Xiaodong Chen
- Guangdong YanJie Pharmatech Co. Ltd; Guangzhou China
| | - Tai Wang
- Guangdong YanJie Pharmatech Co. Ltd; Guangzhou China
| | - Yaomou Zhang
- Yingde Greatchem Chemicals Co. Ltd; Yingde China
| | - Weiguang Zhang
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| |
Collapse
|
42
|
Using chromatogram averaging to improve quantitation of minor impurities. J Chromatogr A 2016; 1465:205-10. [DOI: 10.1016/j.chroma.2016.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/15/2016] [Accepted: 08/20/2016] [Indexed: 11/20/2022]
|
43
|
Joyce LA, Regalado EL, Welch CJ. Hydroxypyridyl Imines: Enhancing Chromatographic Separation and Stereochemical Analysis of Chiral Amines via Circular Dichroism. J Org Chem 2016; 81:8199-205. [DOI: 10.1021/acs.joc.6b01162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leo A. Joyce
- Analytical Research & Development, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Erik L. Regalado
- Analytical Research & Development, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Christopher J. Welch
- Analytical Research & Development, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| |
Collapse
|
44
|
Wahab MF, Wimalasinghe RM, Wang Y, Barhate CL, Patel DC, Armstrong DW. Salient Sub-Second Separations. Anal Chem 2016; 88:8821-6. [PMID: 27529503 DOI: 10.1021/acs.analchem.6b02260] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sub-second liquid chromatography in very short packed beds is demonstrated as a broad proof of concept for chiral, achiral, and HILIC separations of biologically important molecules. Superficially porous particles (SPP, 2.7 μm) of different surface chemistries, namely, teicoplanin, cyclofructan, silica, and quinine, were packed in 0.5-cm-long columns for separating different classes of compounds. Several issues must be addressed to obtain the maximum performance of 0.5 cm columns with reduced plate heights of 2.6 to 3.0. Modified UHPLC hardware can be used to obtain sub-second separations provided extra-column dispersion is minimized and sufficient data acquisition rates are used. Further, hardware improvements will be needed to take full advantage of faster separations. The utility of power transform, which is already employed in certain chromatography detectors, is shown to be advantageous for sub-second chromatography. This approach could prove to be beneficial in fast screening and two-dimensional liquid chromatography.
Collapse
Affiliation(s)
- M Farooq Wahab
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Rasangi M Wimalasinghe
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Yadi Wang
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Chandan L Barhate
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Darshan C Patel
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| |
Collapse
|
45
|
Barhate CL, Wahab MF, Tognarelli DJ, Berger TA, Armstrong DW. Instrumental Idiosyncrasies Affecting the Performance of Ultrafast Chiral and Achiral Sub/Supercritical Fluid Chromatography. Anal Chem 2016; 88:8664-72. [DOI: 10.1021/acs.analchem.6b01898] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chandan L. Barhate
- Department
of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - M. Farooq Wahab
- Department
of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | | | | | - Daniel W. Armstrong
- Department
of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
46
|
Yang Z, Sun L, Liang C, Xu Y, Cao J, Yang Y, Gu J. Simultaneous quantitation of the diastereoisomers of scholarisine and 19-epischolarisine, vallesamine, and picrinine in rat plasma by supercritical fluid chromatography with tandem mass spectrometry and its application to a pharmacokinetic study. J Sep Sci 2016; 39:2652-60. [DOI: 10.1002/jssc.201600243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Zhichao Yang
- School of Life Sciences; Jilin University; Changchun PR China
| | - Lingxia Sun
- School of Life Sciences; Jilin University; Changchun PR China
| | - Chunsu Liang
- School of Life Sciences; Jilin University; Changchun PR China
| | | | | | - Yan Yang
- School of Life Sciences; Jilin University; Changchun PR China
| | - Jingkai Gu
- School of Life Sciences; Jilin University; Changchun PR China
- Clinical Pharmacology Center, Research Institute of Translational Medicine; The First Hospital of Jilin University; Changchun PR China
| |
Collapse
|
47
|
Lemasson E, Bertin S, West C. Use and practice of achiral and chiral supercritical fluid chromatography in pharmaceutical analysis and purification. J Sep Sci 2016; 39:212-33. [DOI: 10.1002/jssc.201501062] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Elise Lemasson
- Institut de Chimie Organique et Analytique (ICOA); Univ Orleans, CNRS; Orléans cedex France
| | | | - Caroline West
- Institut de Chimie Organique et Analytique (ICOA); Univ Orleans, CNRS; Orléans cedex France
| |
Collapse
|
48
|
Zawatzky K, Biba M, Regalado EL, Welch CJ. MISER chiral supercritical fluid chromatography for high throughput analysis of enantiopurity. J Chromatogr A 2016; 1429:374-9. [DOI: 10.1016/j.chroma.2015.12.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/12/2015] [Accepted: 12/20/2015] [Indexed: 12/18/2022]
|
49
|
Ismail OH, Ciogli A, Villani C, De Martino M, Pierini M, Cavazzini A, Bell DS, Gasparrini F. Ultra-fast high-efficiency enantioseparations by means of a teicoplanin-based chiral stationary phase made on sub-2 μm totally porous silica particles of narrow size distribution. J Chromatogr A 2015; 1427:55-68. [PMID: 26687167 DOI: 10.1016/j.chroma.2015.11.071] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 11/26/2022]
Abstract
A new ultra-high performance teicoplanin-based stationary phase was prepared starting from sub-2 μm totally porous silica particles of narrow size distribution. Columns of different lengths were packed at high pressure and a deep and systematic evaluation of kinetic performance, in terms of van Deemter analysis, was performed under different elution conditions (HILIC, POM, RP and NP) by using both achiral and chiral probes. For the achiral probes, the efficiency of the columns at the minimum of the van Deemter curves were very high leading to some 278,000, 270,000, 262,000 and 232,000 plates/m in hydrophilic interaction liquid chromatography (HILIC), polar organic mode (POM), normal phase (NP) and reversed phase (RP) respectively. The lowest plate height, Hmin=3.59 μm (h(/)=1.89), was obtained under HILIC conditions at a flow rate of 1.4 mL/min. Efficiency as high as 200,000-250,000 plates/m (at the optimum flow rate) was obtained in the separation of the enantiomers of chiral probes under HILIC/POM conditions. N-protected amino acids, α-aryloxy acids, herbicides, anti-inflammatory agents were baseline separated on short (2-cm) and ultra-short (1-cm) columns, with analysis time in the order of 1 min. The enantiomers of N-BOC-d,l-methionine were successfully baseline separated in only 11s in HILIC mode. Several examples of fast and efficient resolutions in sub/supercritical fluid chromatography were also obtained for a range of chiral carboxylic acids.
Collapse
Affiliation(s)
- Omar H Ismail
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Alessia Ciogli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Claudio Villani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Michela De Martino
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Marco Pierini
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Alberto Cavazzini
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - David S Bell
- Sigma-Aldrich/Supelco, 595 North Harrison Road, Bellefonte, PA 16823, USA
| | - Francesco Gasparrini
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
50
|
Siegle AF, Trapp O. Implementation of Hadamard encoding for rapid multisample analysis in liquid chromatography. J Sep Sci 2015; 38:3839-3844. [DOI: 10.1002/jssc.201500849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander F. Siegle
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Heidelberg Germany
| | - Oliver Trapp
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Heidelberg Germany
| |
Collapse
|