1
|
Huang Y, Pang J, Zhang S, Huang W. Pretreatment methods in ion chromatography: A review. J Chromatogr A 2024; 1730:465162. [PMID: 39018738 DOI: 10.1016/j.chroma.2024.465162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
As an advanced analytical technology, Ion Chromatography (IC) has been widely used in various fields. At present, it is faced with the challenges of sample complexity and instrument precision. It is necessary to select appropriate pretreatment methods to achieve sample preparation and protect the instruments. Therefore, this paper reviews several commonly used sample pretreatment technologies in IC, focusing on sample digestion and purification techniques. Additionally, we introduce some advanced IC technologies and automatic sample processing devices. We provide a comprehensive summary of the basic principles, primary applications and the advantages and disadvantages of each method. Pretreatment methods should be carefully selected and optimized on the specific characteristics of the sample and the ions to be measured, in order to achieve better analysis results.
Collapse
Affiliation(s)
- Yongming Huang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, 430078, China
| | - Jiafeng Pang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, 430078, China
| | - Shengnan Zhang
- College of Water Hydraulic and Architectural Engineering, Tarim University, Alaer, China
| | - Weixiong Huang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, 430078, China; College of Water Hydraulic and Architectural Engineering, Tarim University, Alaer, China.
| |
Collapse
|
2
|
Zhang H, Wang H, Cao X, Chen M, Liu Y, Zhou Y, Huang M, Xia L, Wang Y, Li T, Zheng D, Luo Y, Sun S, Zhao X, Sun X. Unveiling Cutting-Edge Developments in Electrocatalytic Nitrate-to-Ammonia Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312746. [PMID: 38198832 DOI: 10.1002/adma.202312746] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Indexed: 01/12/2024]
Abstract
The excessive enrichment of nitrate in the environment can be converted into ammonia (NH3) through electrochemical processes, offering significant implications for modern agriculture and the potential to reduce the burden of the Haber-Bosch (HB) process while achieving environmentally friendly NH3 production. Emerging research on electrocatalytic nitrate reduction (eNitRR) to NH3 has gained considerable momentum in recent years for efficient NH3 synthesis. However, existing reviews on nitrate reduction have primarily focused on limited aspects, often lacking a comprehensive summary of catalysts, reaction systems, reaction mechanisms, and detection methods employed in nitrate reduction. This review aims to provide a timely and comprehensive analysis of the eNitRR field by integrating existing research progress and identifying current challenges. This review offers a comprehensive overview of the research progress achieved using various materials in electrochemical nitrate reduction, elucidates the underlying theoretical mechanism behind eNitRR, and discusses effective strategies based on numerous case studies to enhance the electrochemical reduction from NO3 - to NH3. Finally, this review discusses challenges and development prospects in the eNitRR field with an aim to guide design and development of large-scale sustainable nitrate reduction electrocatalysts.
Collapse
Affiliation(s)
- Haoran Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Haijian Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Xiqian Cao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Mengshan Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Yuelong Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
3
|
Altahan MF, Ali AG, Hathoot AA, Azzem MA. Modified electrode decorated with silver as a novel non-enzymatic sensor for the determination of ammonium in water. Sci Rep 2023; 13:16861. [PMID: 37803033 PMCID: PMC10558464 DOI: 10.1038/s41598-023-43616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Ammonium is an essential component of the nitrogen cycle, which is essential for nitrogen cycling in ecosystems. On the other hand, ammonium pollution in water poses a great threat to the ecosystem and human health. Accurate and timely determination of ammonium content is of great importance for environmental management and ensuring the safety of water supply. Here we report a highly sensitive electrochemical sensor for ammonium in water samples. The modified electrode is based on the incorporation of silver nitrate (AgNO3) into a carbon paste embedded with 1-aminoanthraquinone and supported by multi-walled carbon nanotubes, which are commercially available. A potential of 0.75 V is applied to the modified electrode, followed by activation in hydrochloric acid. The modified electrode was used for square wave voltammetry of ammonium in water in the potential range of - 0.4-0.2 V. The performance of ammonium analysis was determined in terms of square wave frequency, square wave amplitude and concentration of electrolyte solution (sodium sulphate). The calculation of the surface area according to the Randles-Sevcik equation resulted in the largest surface area for the Ag/pAAQ/MWCNTs/CPE. The modified electrode exhibited a linear range of 5-100 µM NH4+ in 0.1 M Na2SO4 with a detection limit of 0.03 µM NH4+ (3σ). In addition, the modified electrode showed high precision with an RSD value of 9.93% for 10 repeated measurements. No interfering effect was observed at twofold and tenfold additive concentrations of foreign ions. Good recoveries were obtained in the analysis of tap and mineral water after spiking with a concentration of ammonium ions.
Collapse
Affiliation(s)
- Mahmoud Fatehy Altahan
- Central Laboratory for Environmental Quality Monitoring, National Water Research Centre, El-Qanater El-Khairia, 13621, Egypt.
| | - Asmaa Galal Ali
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt.
| | - Abla Ahmed Hathoot
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt
| | - Magdi Abdel Azzem
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt
| |
Collapse
|
4
|
You C, Ho T, Rucker V, Yeh J, Wang L. A simple and universal headspace GC-FID method for accurate quantitation of volatile amines in pharmaceuticals. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4427-4433. [PMID: 37646200 DOI: 10.1039/d3ay00956d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Volatile amines are reagents commonly used in pharmaceutical manufacturing of intermediates, active pharmaceutical ingredients (APIs), and drug products as participating regents for chemical reactions and optimization of product yield. Due to their compound specific daily allowable intake, residual volatile amines are required by regulatory agencies to be monitored and controlled in pharmaceutical products intended for human consumption. However, the accurate quantification of residual volatile amines in pharmaceutical entities can often be challenging as these analytes may chemically react and/or interact with the sample matrix. Herein, we describe a simple and universal headspace gas chromatography with flame ionization detection (HS-GC-FID) method capable of separating 14 commonly used volatile amines. The chemical activity of the volatile amines with the API matrix were mitigated by using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an additive to reduce matrix effects in conventional high-boiling diluents. The addition of DBU drastically improved the detectability and method accuracy of the residual volatile amines in an acidic API, namely, Ketoprofen®. Additionally, DBU was employed as a GC deactivation reagent to ensure interfacial adsorption of the analytes to GC components were reduced, thereby improving method precision. Method validation showed acceptable linearity, limit of detection, limit of quantitation, solution stability, precision, and robustness. Separation specificity, evaluated by observing the chromatographic resolution of the volatile amines with one-another and against a set of 23 common residual solvents, were shown to be acceptable for most peak pairs.
Collapse
Affiliation(s)
- Congchao You
- Analytical Development and Operations, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Tien Ho
- Analytical Development and Operations, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Victor Rucker
- Analytical Development and Operations, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Jerry Yeh
- Analytical Development and Operations, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Lin Wang
- Analytical Development and Operations, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| |
Collapse
|
5
|
Zhang X, Duan Z, Zhao Y, Wu Y, Qiu T, Shi X. Direct Determination of Diethanolamine in High Salinity Dehydrogenation Reaction Solutions by Ion Chromatography (IC). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1916515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xinping Zhang
- College of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Zhengkang Duan
- College of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Yunlu Zhao
- College of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Yingying Wu
- College of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Tian Qiu
- College of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Xiaolong Shi
- College of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
6
|
Michalski R, Pecyna-Utylska P, Kernert J. Determination of ammonium and biogenic amines by ion chromatography. A review. J Chromatogr A 2021; 1651:462319. [PMID: 34146959 DOI: 10.1016/j.chroma.2021.462319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022]
Abstract
The amount and type of chemical compounds found in food products and the environment, which are and should be controlled, is increasing. This is associated with toxicological knowledge, resulting regulations, rapid development of analytical methods and techniques, and sample preparation methods for analysis. These include, among others, ammonia derivatives such as ammonium, and amines, including biogenic amines. Their occurrence in the environment and food is related to their widespread use in many areas of life and their formation as a result of various physical and chemical changes. Analysts use various methods both classical and instrumental to theirs quantify in different matrices such as food, medicinal and environmental samples. Nevertheless, there is still a need for analytical methods with increased matrix-tolerance, selectivity, specificity, and higher sensitivity. While in the determination of ammonium, ion chromatography is a reference method. In the case of biogenic amines, its use for these purposes is not yet so common. However, given ion chromatography its advantages and rapid development, its importance can be expected to increase in the near future, especially at the expense of gas chromatography methods. This paper is a summary of the advantages and limitations of ion chromatography in this important analytical field and a literature review of the past 15 years.
Collapse
Affiliation(s)
- Rajmund Michalski
- Institute of Environmental Engineering, Polish Academy of Sciences, Sklodowska-Curie 34 Street, Zabrze 41-819, Poland.
| | - Paulina Pecyna-Utylska
- Institute of Environmental Engineering, Polish Academy of Sciences, Sklodowska-Curie 34 Street, Zabrze 41-819, Poland
| | - Joanna Kernert
- Institute of Environmental Engineering, Polish Academy of Sciences, Sklodowska-Curie 34 Street, Zabrze 41-819, Poland
| |
Collapse
|
7
|
Mulec AO, Mladenovič A, Pranjić AM, Oprčkal P, Ščančar J, Milačič R. Study of interferences and procedures for their removal in the spectrophotometric determination of ammonium and selected anions in coloured wastewater samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4769-4782. [PMID: 32940268 DOI: 10.1039/d0ay01361g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ammonium and selected anions were determined in wastewater samples with highly complex matrices by spectrophotometry using the reagent-kit method. For this purpose, the interferents of coloured compounds and S2-, SO32-, CO32- and Cl-, which are often present in wastewater samples, were systematically investigated in the spectrophotometric determination of ammonium, nitrate, chloride, sulphate, fluoride and phosphate. After this, innovative procedures for their removal were proposed. For sample decolourization, a DEAE column was used to determine ammonium, while a Florisil column was used for the colour removal and anions' determination. S2- and CO32- were eliminated from the samples by adding HCl or HNO3, which transformed them into gases H2S and CO2. The stepwise addition of CaCl2 to the sample, adjusted to pH 8, initiated the formation of CaSO3, which was removed by filtration. Cl- was removed by the addition of Ag2O, which formed a AgCl precipitate that was removed from the solution by filtration. The accuracy of the determination was tested with spike-recovery tests, which showed recoveries for the analytes in the spiked samples ranging from 95 to 105%. The repeatability of the measurements of nitrate, chloride, sulphate and phosphate in the wastewater samples was better than ±1%, while that for the ammonium and fluoride samples was ±2 and ±5%, respectively. The data from the present investigation revealed that the developed procedures for the decolourization and stepwise removal of interferents enabled accurate spectrophotometric determination of ammonium, nitrate, chloride, sulphate, fluoride and phosphate by using cuvette tests in complex wastewater and environmental water samples.
Collapse
Affiliation(s)
- Andreea Oarga Mulec
- Department of Materials, Slovenian National Building and Civil Engineering Institute, Dimičeva 12, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
8
|
Development of analytical methods for ammonium determination in seawater over the last two decades. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115627] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Douša M, Doubský J. Separation of structurally related primary aliphatic amines using hydrophilic interaction chromatography with fluorescence detection after postcolumn derivatization with o-phthaldialdehyde/mercaptoethanol. J Sep Sci 2018; 40:4689-4699. [PMID: 29057598 DOI: 10.1002/jssc.201701005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 11/09/2022]
Abstract
The retention behavior of primary aliphatic amines (homologous series of aliphatic alkyl amines and cycloalkyl amines) and positional isomers of alkylamines in the hydrophilic interaction chromatography mode was studied. The study was carried out on a TSKgel Amide-80 column followed by postcolumn derivatization with fluorescence detection to describe the retention mechanism of tested compounds. The effect of chromatographic conditions including column temperature, acetonitrile content in the mobile phase, mobile phase pH (ranging from 3.5 to 6.8), and salt concentration in the mobile phase was investigated. The final mobile phase consisted of acetonitrile and solution of 20 mM potassium formate pH 3.5 in ratio 80:20 v/v. The analyses were carried out at mobile phase flow rate of 1.0 mL/min and the column temperature of 20°C. The developed method was fully validated in terms of linearity, sensitivity (limit of detection and limit of quantification), accuracy, and precision according to International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. The proposed new methods were proved to be highly sensitive, simple, and rapid, and were successfully applied to the determinations of isopropylamine, cyclohexylamine, and cyclopropylamine in relevant active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Michal Douša
- Zentiva, k.s. Praha, a Sanofi Company, Prague, Czech Republic
| | - Jan Doubský
- Zentiva, k.s. Praha, a Sanofi Company, Prague, Czech Republic
| |
Collapse
|
10
|
Generic gas chromatography-flame ionization detection method for quantitation of volatile amines in pharmaceutical drugs and synthetic intermediates. J Chromatogr A 2017; 1518:70-77. [DOI: 10.1016/j.chroma.2017.08.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022]
|
11
|
Han L, Hou D, Ma C, Fu N, Liu J, Feng F, Liu W, Zheng F. Simultaneous determination of eight short-chain aliphatic amines in drug substances by HPLC with diode array detection after derivatization with halonitrobenzenes. J Sep Sci 2017; 40:3074-3085. [DOI: 10.1002/jssc.201700472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Lingfei Han
- Department of Pharmaceutical Analysis; China Pharmaceutical University; Nanjing China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education; China Pharmaceutical University; Nanjing China
| | - Desheng Hou
- Department of Pharmaceutical Analysis; China Pharmaceutical University; Nanjing China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education; China Pharmaceutical University; Nanjing China
| | - Congyu Ma
- Department of Pharmaceutical Analysis; China Pharmaceutical University; Nanjing China
| | - Na Fu
- Department of Pharmaceutical Analysis; China Pharmaceutical University; Nanjing China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education; China Pharmaceutical University; Nanjing China
| | - Jing Liu
- Department of Pharmaceutical Analysis; China Pharmaceutical University; Nanjing China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education; China Pharmaceutical University; Nanjing China
| | - Feng Feng
- Key Laboratory of Biomedical Functional Materials; China Pharmaceutical University; Nanjing China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis; China Pharmaceutical University; Nanjing China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education; China Pharmaceutical University; Nanjing China
| | - Feng Zheng
- Department of Pharmaceutical Analysis; China Pharmaceutical University; Nanjing China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education; China Pharmaceutical University; Nanjing China
| |
Collapse
|
12
|
Ferreira FN, Afonso JC, Pontes FVM, Carneiro MC, Neto AA, Junior RE, Monteiro MIC. Ultrasound-assisted purge-and-trap extraction for simultaneous determination of low-molecular weight amines and ammonium in high salinity waters by ion chromatography. Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Kurzyca I, Niedzielski P, Frankowski M. Simultaneous speciation analysis of inorganic nitrogen with the use of ion chromatography in highly salinated environmental samples. J Sep Sci 2016; 39:3482-7. [DOI: 10.1002/jssc.201600514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/21/2016] [Accepted: 07/08/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Iwona Kurzyca
- Department of Water and Soil AnalysisAdam Mickiewicz University Poznan Poland
| | | | - Marcin Frankowski
- Department of Water and Soil AnalysisAdam Mickiewicz University Poznan Poland
| |
Collapse
|