1
|
Skok A, Vishnikin A, Bazel Y, Toth J. Determination of Rhodamine 6G with direct immersion single-drop microextraction combined with an optical probe. PLoS One 2024; 19:e0309121. [PMID: 39159159 PMCID: PMC11332950 DOI: 10.1371/journal.pone.0309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
The combination of an optical probe and single-drop direct immersion microextraction (DI-SDME-OP) was used for the preconcentration and subsequent spectrophotometric determination of rhodamine 6G (Rh6G). The developed method is based on the formation of an ionic associate between Rh6G and picric acid at pH 3.0 and its extraction with amyl acetate. A microdrop of the organic phase was stably placed in the hole of an optical probe immersed in the sample solution. The absorbance of the extraction phase was monitored at 534 nm. The proposed method combines in a single step several stages of the analytical procedure, such as pre-concentration, phase separation, transfer of the extraction phase to the instrument and online measurement. The sensitivity of the proposed approach is not inferior to existing microextraction methods involving the combination of liquid-phase or solid-phase extraction with spectrophotometry or HPLC with a UV-Vis detector. The evaluation of the greenness of the developed method carried out by the AGREE method (0.58 points) showed that it outperforms other similar existing techniques using this parameter. The calibration plot for the determination of Rh6G by the DI-SDME-OP method was linear over the range of 10-500 nM with a correlation coefficient of 0.9956. The limit of detection was 3.4 nM. The accuracy and applicability of the method were evaluated by the determination of Rh6G in natural waters and lipstick.
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Faculty of Chemistry, Oles Honchar Dnipro National University, Dnipro, Ukraine
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Andriy Vishnikin
- Department of Analytical Chemistry, Faculty of Chemistry, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Ján Toth
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| |
Collapse
|
2
|
Skok A, Bazel Y, Vishnikin A, Toth J. Direct immersion single-drop microextraction combined with fluorescence detection using an optical probe. Application for highly sensitive determination of rhodamine 6G. Talanta 2024; 269:125511. [PMID: 38056415 DOI: 10.1016/j.talanta.2023.125511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
The use of an optical probe for fluorescence detection combined with direct immersion single-drop microextraction has been demonstrated as an innovative approach. The optical probe served both as a drop holder for extractant and as a measuring device which made it possible to eliminate the use of cuvettes. A laser and a light emitting diode (LED) were tested as possible light sources. Both of them showed comparable results. However, given the much smaller half-band width of the laser radiation, its use has proven to be preferable since background correction can be eliminated. Direct immersion single-drop microextraction of an ionic association complex of rhodamine 6G with picric acid with subsequent fluorescent detection (λex was 532 nm and 525 nm for laser and LED, respectively; λem was 560 nm for both laser and LED) was used a model system to evaluate the new approach. The extractant phase was a 55 μL amyl acetate microdrop fixed in the optical part of the probe. LOD, LOQ and linear calibration range were found as 0.14, 0.48 and 0.5-10 nmol L-1, and 0.15, 0.50 and 0.5-5 nmol L-1 for laser and LED light sources, respectively. The accuracy of the method was assessed by analyzing real water samples.
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Andriy Vishnikin
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic; Department of Analytical Chemistry, Faculty of Chemistry, Oles Honchar Dnipro National University, Gagarin Av. 72, 49010, Dnipro, Ukraine
| | - Ján Toth
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic; Department of Technical Disciplines in Health Care, Faculty of Health Care, University of Prešov, Prešov, Slovak Republic
| |
Collapse
|
3
|
Ozalp O, Gumus ZP, Soylak M. Metal-organic framework functionalized with deep eutectic solvent for solid-phase extraction of Rhodamine 6G in water and cosmetic products. J Sep Sci 2023; 46:e2300190. [PMID: 37496320 DOI: 10.1002/jssc.202300190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
An NH2 -MIL-53(Al)-DES(ChCl-Urea) nanocomposite was synthesized for extraction and determination of Rhodamine (Rh) 6G from environmental and cosmetic samples. The deep eutectic solvent (DES) was prepared by mixing choline chloride and urea in a mole ratio of 1:2. NH2 -MIL-53(Al)-DES(ChCl-Urea) nanocomposite was synthesized using the impregnation method at a ratio of 60:40 (w/w). The optimum conditions were determined after NH2 -MIL-53(Al)-DES(ChCl-Urea) characterization was performed. The optimum conditions were determined as pH 8, adsorbent amount of 15 mg, total adsorption-desorption time of 6 min, and enrichment factor of 20. The recovery values of the solid-phase extraction method for water and cosmetic samples under optimum conditions were between 95% and 106%. NH2 -MIL-53(Al)-DES(ChCl-Urea) nanocomposite was an economically advantageous adsorbent because of its reusability of 15 times. All analyses were performed using the ultraviolet-visible spectrophotometer. The linear range, limit of detection, and limit of quantification of the method were 100-1000, 9.80, and 32.68 μg/L, respectively. The obtained results showed that the synthesized nanocomposite is a suitable adsorbent for the determination of Rh 6G in water and cosmetic samples. The real sample applications were verified with the high-performance liquid chromatography system.
Collapse
Affiliation(s)
- Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, Izmir, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center (ERU-TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, Turkey
| |
Collapse
|
4
|
Liang D, Wang X, Liu J, Liu J, Tang S, Xu B, Jin R. Design, preparation and adsorption performances of norfloxacin molecularly imprinted polymers. J Mol Graph Model 2022; 114:108197. [DOI: 10.1016/j.jmgm.2022.108197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022]
|
5
|
Azizi A, Bottaro CS. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J Chromatogr A 2020; 1614:460603. [DOI: 10.1016/j.chroma.2019.460603] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/05/2023]
|
6
|
Aggregation-induced emission luminogen based molecularly imprinted ratiometric fluorescence sensor for the detection of Rhodamine 6G in food samples. Food Chem 2019; 287:55-60. [DOI: 10.1016/j.foodchem.2019.02.081] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/25/2018] [Accepted: 02/20/2019] [Indexed: 01/10/2023]
|
7
|
Sánchez-González J, Peña-Gallego Á, Sanmartín J, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A. NMR spectroscopy for assessing cocaine-functional monomer interactions when preparing molecularly imprinted polymers. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Zaidi SA. An Account on the Versatility of Dopamine as a Functional Monomer in Molecular Imprinting. ChemistrySelect 2019. [DOI: 10.1002/slct.201901029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shabi Abbas Zaidi
- Department of ChemistryKwangwoon University, 20 Kwangwoon-ro, Nowon-Gu Seoul 01897 Korea
| |
Collapse
|
9
|
Magnetic molecular imprinting polymers based on three-dimensional (3D) graphene-carbon nanotube hybrid composites for analysis of melamine in milk powder. Food Chem 2018; 255:226-234. [DOI: 10.1016/j.foodchem.2018.02.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/27/2018] [Accepted: 02/13/2018] [Indexed: 01/07/2023]
|
10
|
Magnetic molecularly imprinted polymer nanoparticles for dispersive micro solid-phase extraction and determination of buprenorphine in human urine samples by HPLC-FL. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1355-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Molecular imprinted chitosan-TiO2 nanocomposite for the selective removal of Rose Bengal from wastewater. Int J Biol Macromol 2018; 107:1046-1053. [DOI: 10.1016/j.ijbiomac.2017.09.082] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/17/2017] [Accepted: 09/20/2017] [Indexed: 11/19/2022]
|
12
|
Khezeli T, Daneshfar A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|