1
|
Bai H, Teng G, Zhang C, Yang J, Yang W, Tian F. Magnetic materials as adsorbents for the pre-concentration and separation of active ingredients from herbal medicine. J Sep Sci 2024; 47:e2400274. [PMID: 39073301 DOI: 10.1002/jssc.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Herbal medicine (HM) is crucial in disease management and contains complex compounds with few active pharmacological ingredients, presenting challenges in quality control of raw materials and formulations. Effective separation, identification, and analysis of active components are vital for HM efficacy. Traditional methods like liquid-liquid extraction and solid-phase extraction are time-consuming and environmentally concerning, with limitations such as sorbent issues, pressure, and clogging. Magnetic solid-phase extraction uses magnetic sorbents for targeted analyte separation and enrichment, offering rapid, pressure-free separation. However, inorganic magnetic particles' aggregation and oxidation, as well as lack of selectivity, have led to the use of various coatings and modifications to enhance specificity and selectivity for complex herbal samples. This review delves into magnetic composites in HM pretreatment, specifically focusing on encapsulated or modified magnetic nanoparticles and materials like silica, ionic liquids, graphene family derivatives, carbon nanotubes, metal-organic frameworks, covalent organic frameworks, and molecularly imprinted polymers.
Collapse
Affiliation(s)
- Hezhao Bai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Guohua Teng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Chen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Jingyi Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Fei Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
2
|
Wang Y, Zhao W, Gao R, Hussain S, Hao Y, Tian J, Chen S, Feng Y, Zhao Y, Qu Y. Preparation of lightweight daisy-like magnetic molecularly imprinted polymers via etching synergized template immobilization for enhanced rapid detection of trace 17β-estradiol. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127216. [PMID: 34592596 DOI: 10.1016/j.jhazmat.2021.127216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
17β-estradiol (E2), as one of the pharmaceutical and personal care product, frequently contaminates environmental water as estrogen pollutant and possesses great risk to human survival as well as the sustainable development of the ecosystem. Herein, to achieve an effective adsorbent system for the selective removal of E2 from the environmental water, Fe3O4 nanoparticles are subjected to chemical etching to reduce the overall mass and then employed as carriers to prepare a novel type of lightweight daisy-like magnetic molecularly imprinted polymers (LD-MMIPs) adopting template immobilization strategy. The LD-MMIPs based etched magnetic nanoparticles not only exhibit light mass but also have plentiful imprinted sites in the etched channels, which significantly increases the adsorption capacity for E2. The daisy-like LD-MMIPs own strong magnetic responsiveness, well crystallinity, fast binding kinetics, high adsorption amount, and excellent selectivity. Moreover, combining with HPLC, the LD-MMIPs as adsorbents have been successfully used to specifically recognize and detect trace E2 in environmental water. Thus, the proposed LD-MMIPs with high adsorption capacity hold great potential in monitoring water pollution. Additionally, this work also provides an alternative strategy for improving the adsorption capacity of magnetic molecularly imprinted polymers through a convenient chemical etching technology.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenchang Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Sameer Hussain
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yi Hao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Jiahao Tian
- Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shihui Chen
- Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunhao Feng
- Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yubo Zhao
- Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuyao Qu
- Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Karimi Baker Z, Sardari S. Molecularly Imprinted Polymer (MIP) Applications in Natural Product Studies Based on Medicinal Plant and Secondary Metabolite Analysis. IRANIAN BIOMEDICAL JOURNAL 2021; 25:68-77. [PMID: 33461288 PMCID: PMC7921521 DOI: 10.29252/ibj.25.2.68] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Characterization and extraction of plant secondary metabolites are important in agriculture, pharmaceutical, and food industry. In this regard, the applied analytical methods are mostly costly and time-consuming; therefore, choosing a suitable approach is essential for optimum results and economic suitability. One of the recently considered methods used to characterize new types of materials is MIPs. Among the various applications of MIPs is the identification and separation of various plant-derived compounds, such as secondary metabolites, chemical residues, and pesticides. The present review describes the application of MIPs as a tool in medicinal plant material analysis, focusing on plant secondary metabolism.
Collapse
Affiliation(s)
- Zahra Karimi Baker
- Department of Horticulture, Faculty of Agriculture, Shahed University, Tehran, Iran.,Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 13164, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 13164, Iran
| |
Collapse
|
4
|
Arabzadeh N, Mohammadi A, Darwish M, Abuzerr S. Construction of a TiO
2
–Fe
3
O
4
‐decorated molecularly imprinted polymer nanocomposite for tartrazine degradation: Response surface methodology modeling and optimization. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Naghmeh Arabzadeh
- Department of Drug and Food Control, Faculty of PharmacyTehran University of Medical Sciences Tehran Iran
| | - Ali Mohammadi
- Department of Drug and Food Control, Faculty of PharmacyTehran University of Medical Sciences Tehran Iran
- Pharmaceutical Quality Assurance Research Centre, Faculty of Pharmacy, International CampusTehran University of Medical Sciences Tehran Iran
- Nanotechnology Research Centre, Faculty of PharmacyTehran University of Medical Sciences Tehran Iran
| | - Maher Darwish
- Pharmaceutical Quality Assurance Research Centre, Faculty of Pharmacy, International CampusTehran University of Medical Sciences Tehran Iran
- Department of PharmacyAl‐Safwa University College Karbala Iraq
| | - Samer Abuzerr
- Department of Environmental Health Engineering, Faculty of Public Health, International CampusTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
5
|
Debittering of lemon juice using surface molecularly imprinted polymers and the utilization of limonin. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:205-211. [PMID: 30529494 DOI: 10.1016/j.jchromb.2018.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/15/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022]
Abstract
In this work, surface molecularly imprinted polymers (SMIPs) were prepared as a specific sorbent to remove the limonin from the lemon juice for the first time, and then the MIPs containing limonin were directly made into a water-soluble gel to treat inflammation of mice. The resulting polymers were characterized by scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectrometer spectra. And the polymerization conditions and adsorption performances of the resultant nanomaterials were further investigated in detail. Results showed that the MIPs have higher adsorption capacity (27.72 mg/g) compared with surface molecularly non-imprinted polymers (NIPs) (8.12 mg/g). The selectivity experiment indicated that the polymers had excellent selective recognition for limonin and the selectivity factors were calculated as 2.75 and 1.83 for nomilin and obakunone, respectively. The MIPs were successfully used as adsorbent for selectively removing limonin from lemon juice and the MIPs extracted almost all the limonin from lemon juice according to the HPLC results. Furthermore, the MIPs with limonin were processed into water-soluble gel, which can be used to reduce the inflammation and enhance wound healing of model mice.
Collapse
|
6
|
Malik MI, Shaikh H, Mustafa G, Bhanger MI. Recent Applications of Molecularly Imprinted Polymers in Analytical Chemistry. SEPARATION AND PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1457541] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad Imran Malik
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Huma Shaikh
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Ghulam Mustafa
- Sulaiman Bin Abdullah Aba Al-khail Center for Interdisciplinary Research in Basic Sciences (SACIRBS), International Islamic University, Islamabad, Pakistan
| | - Muhammad Iqbal Bhanger
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| |
Collapse
|
7
|
Piao J, Liu L, Wang S, Shang HB, He M, Quan N, Li D. Magnetic separation coupled with high-performance liquid chromatography-mass spectrometry for rapid separation and determination of lignans in Schisandra chinensis. J Sep Sci 2018; 41:2056-2063. [DOI: 10.1002/jssc.201701098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/20/2017] [Accepted: 01/17/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jishou Piao
- Department of Chemistry; Yanbian University; Yanji China
- Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecular; Ministry of Education; Yanbian University; Yanji China
| | - Lu Liu
- Department of Chemistry; Yanbian University; Yanji China
- Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecular; Ministry of Education; Yanbian University; Yanji China
| | - Sihong Wang
- Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecular; Ministry of Education; Yanbian University; Yanji China
- Analysis and Inspection Center; Yanbian University; Yanji China
| | - Hai-Bo Shang
- Department of Chemistry; Yanbian University; Yanji China
- Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecular; Ministry of Education; Yanbian University; Yanji China
| | - Miao He
- Department of Chemistry; Yanbian University; Yanji China
- Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecular; Ministry of Education; Yanbian University; Yanji China
| | - Ninghai Quan
- Department of Chemistry; Yanbian University; Yanji China
- Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecular; Ministry of Education; Yanbian University; Yanji China
| | - Donghao Li
- Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecular; Ministry of Education; Yanbian University; Yanji China
| |
Collapse
|
8
|
Li X, Row KH. Application of novel ternary deep eutectic solvents as a functional monomer in molecularly imprinted polymers for purification of levofloxacin. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:56-63. [PMID: 29031109 DOI: 10.1016/j.jchromb.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 01/06/2023]
Abstract
A series of ecofriendly ternary deep eutectic solvents (DESs) with different molar ratios were prepared as candidate functional monomers. Three of the optimal ternary DESs as functional monomers were applied to the preparation of molecularly imprinted polymers (MIPs). After synthesis, the proposed polymers were characterized by elemental analysis (EA), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller surface area measurements (BET) and Fourier transform infrared spectroscopy (FT-IR). These MIPs based on ternary DESs with different molar ratios exhibited different absorption capacities of levofloxacin. A sample of levofloxacin (500ng) was dissolved in a millet extractive (10mL). All MIPs were used as SPE adsorbents to purify the extracts. According to characterization result, the ternary DES-3 (1:3:1.5) was joined in the synthetic process of MIP-1. The green ternary DES-3-based MIPs had the best selectivity recovery for levofloxacin (91.4%) from the millet extractive. The best selectivity of MIP-1 was attributed to the novel monomer (ternary DES) in the preparation of the materials. Overall, ternary DES-based MIPs have potential applications as media in many research areas.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, Republic of Korea.
| |
Collapse
|
9
|
Fan H, Wang J, Meng Q, Tian Y, Xu X, Jin Z. Photoirradiation surface molecularly imprinted polymers for the separation of 6-O-α-d-maltosyl-β-cyclodextrin. J Sep Sci 2017; 40:4653-4660. [PMID: 28985024 DOI: 10.1002/jssc.201700808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Abstract
Photoirradiation surface molecularly imprinted polymers for the separation of 6-O-α-d-maltosyl-β-cyclodextrin were synthesized using functionalized silica as a matrix, 4-(phenyldiazenyl)phenol as a light-sensitive monomer, and 6-O-α-d-maltosyl-β-cyclodextrin as a template. Fourier transform infrared spectroscopy results indicated that 4-(phenyldiazenyl)phenol was grafted onto the surface of functionalized silica. The obtained imprinted polymers exhibited specific recognition toward 6-O-α-d-maltosyl-β-cyclodextrin. Equilibrium binding experiments showed that the photoirradiation surface molecularly imprinted polymers obtained the maximum adsorption amount of 6-O-α-d-maltosyl-β-cyclodextrin at 20.5 mg/g. In binding kinetic experiments, the adsorption reached saturation within 2 h with binding capacity of 72.8%. The experimental results showed that the adsorption capacity and selectivity of imprinted polymers were effective for the separation of 6-O-α-d-maltosyl-β-cyclodextrin, indicating that imprinted polymers could be used to isolate 6-O-α-d-maltosyl-β-cyclodextrin from a conversion mixture containing β-cyclodextrin and maltose. The results showed that the imprinted polymers prepared by this method were very promising for the selective separation of 6-O-α-d-maltosyl-β-cyclodextrin.
Collapse
Affiliation(s)
- Haoran Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Qingran Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Su L, Jin Y, Huang Y, Zhao R. Surface-imprinted magnetic nanoparticles for the selective enrichment and fast separation of fluoroquinolones in human serum. J Sep Sci 2017; 40:2269-2277. [DOI: 10.1002/jssc.201700080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Liming Su
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|