1
|
Kitagawa F, Sato S, Suzuki T, Kawai T. Combination of on-line sample preconcentration by large-volume dual preconcentration by isotachophoresis and stacking (LDIS) with field-amplified sample injection (FASI) on Y-channel microchips. ANAL SCI 2024; 40:2117-2124. [PMID: 39164467 DOI: 10.1007/s44211-024-00647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
In our previous study, the combination of two on-line sample preconcentration techniques, large-volume sample stacking with an electroosmotic flow (EOF) pump (LVSEP) and transient isotachophoresis (tITP), in microchip electrophoresis (MCE) was developed, which was named large-volume dual preconcentration by isotachophoresis and stacking (LDIS). LDIS was apparently effective for improving the sensitivity and the peak shape. In LDIS, however, there was a limit to the improvement of the sensitivity enhancement factor (SEF) since the amount of analytes to be concentrated was limited to the channel volume. To overcome this issue, in the present article, LDIS was coupled with field-amplified sample injection (FASI) technique on Y-shaped channel microchips. The use of a Y-channel in LDIS-FASI allowed consecutive LVSEP, FASI and tITP enrichments with a simple voltage control. In conventional LVSEP and LDIS analyses of a standard analyte, the SEFs were evaluated to be 2630 and 13,100, respectively, whereas in LDIS-FASI that was increased to 27,900 even at the FASI injection time of 0 s. To achieve higher SEFs, furthermore, the FASI injection time was increased to 150 s, resulting in the best SEF of 58,500. It should be emphasized that the peak width in LDIS-FASI was quite narrow, only 0.3-3.1 s, while in normal LVSEP that was 13 s. Furthermore, the LDIS-FASI technique was applied to the analysis of oligosaccharide mixture. Due to the focusing effect by LDIS-FASI, the resolutions were improved from 0.97-1.57 to 2.08-2.73.
Collapse
Affiliation(s)
- Fumihiko Kitagawa
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-Cho, Hirosaki, Aomori, 036-8561, Japan.
| | - Sora Sato
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-Cho, Hirosaki, Aomori, 036-8561, Japan
| | - Tomohiro Suzuki
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-Cho, Hirosaki, Aomori, 036-8561, Japan
| | - Takayuki Kawai
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-Oka, Nishi-Ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Kitagawa F, Takahashi K, Osanai R, Sasaki R, Kawai T. Application of on-line sample preconcentration by large-volume dual preconcentration by isotachophoresis and stacking (LDIS) on straight-channel microchips. ANAL SCI 2024; 40:1611-1617. [PMID: 38753117 DOI: 10.1007/s44211-024-00597-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 08/30/2024]
Abstract
In this study, large-volume dual preconcentration by isotachophoresis and stacking (LDIS) which is an on-line sample preconcentration technique coupling large-volume sample stacking with an electroosmotic flow pump (LVSEP) with transient isotachophoresis (tITP) was applied to microchip electrophoresis (MCE) for improving both detection sensitivities and peak shapes. To realize LDIS in MCE, we investigated experimental procedures for injecting a short plug of a leading electrolyte (LE) solution into a straight microchannel without any sophisticated injector apparatus. We found that a short LE plug could be injected into a sample-filled straight-channel only by making the liquid level of the LE solution in an outlet reservoir higher than that in an inlet one. By applying a reversed-polarity voltage to the microchip, anionic analytes injected throughout the microchannel were first enriched by LVSEP, followed by tITP. Through the second preconcentration effect by tITP in LDIS, sensitivity enhancement factor (SEF) and asymmetry factor for a standard dye were improved from 878 and 0.62 to 1330 and 1.14, respectively, relative to those in conventional LVSEP. It should be noted that more viscous running buffer containing sieving polymers could be employed to the LDIS analysis, which was effective for improving the SEF and the separation efficiencies, especially for bio-polymeric compounds. Finally, LDIS was applied to the oligosaccharide and protein analyses in MCE, resulting in the SEFs of 1410 and ca. 50 for maltotriose and bovine milk casein, respectively.
Collapse
Affiliation(s)
- Fumihiko Kitagawa
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-Cho, Hirosaki, Aomori, 036-8561, Japan.
| | - Kazuki Takahashi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-Cho, Hirosaki, Aomori, 036-8561, Japan
| | - Reina Osanai
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-Cho, Hirosaki, Aomori, 036-8561, Japan
| | - Ryota Sasaki
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-Cho, Hirosaki, Aomori, 036-8561, Japan
| | - Takayuki Kawai
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-Oka, Nishi-Ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
3
|
Zeid AM, Abdussalam A, Hanif S, Anjum S, Lou B, Xu G. Recent advances in microchip electrophoresis for analysis of pathogenic bacteria and viruses. Electrophoresis 2023; 44:15-34. [PMID: 35689426 DOI: 10.1002/elps.202200082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
Life-threatening diseases, such as hepatitis B, pneumonia, tuberculosis, and COVID-19, are widespread due to pathogenic bacteria and viruses. Therefore, the development of highly sensitive, rapid, portable, cost-effective, and selective methods for the analysis of such microorganisms is a great challenge. Microchip electrophoresis (ME) has been widely used in recent years for the analysis of bacterial and viral pathogens in biological and environmental samples owing to its portability, simplicity, cost-effectiveness, and rapid analysis. However, microbial enrichment and purification are critical steps for accurate and sensitive analysis of pathogenic bacteria and viruses in complex matrices. Therefore, we first discussed the advances in the sample preparation technologies associated with the accurate analysis of such microorganisms, especially the on-chip microfluidic-based sample preparations such as dielectrophoresis and microfluidic membrane filtration. Thereafter, we focused on the recent advances in the lab-on-a-chip electrophoretic analysis of pathogenic bacteria and viruses in different complex matrices. As the microbial analysis is mainly based on the analysis of nucleic acid of the microorganism, the integration of nucleic acid-based amplification techniques such as polymerase chain reaction (PCR), quantitative PCR, and multiplex PCR with ME will result in an accurate and sensitive analysis of microbial pathogens. Such analyses are very important for the point-of-care diagnosis of various infectious diseases.
Collapse
Affiliation(s)
- Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,College of Natural and Pharmaceutical Sciences, Department of Chemistry, Bayero University, Kano, Nigeria.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Saima Hanif
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Punjab, Pakistan
| | - Saima Anjum
- Department of Chemistry, Govt. Sadiq College Women University, Bahawalpur, Pakistan
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
4
|
Bhimwal R, Rustandi RR, Payne A, Dawod M. Recent advances in capillary gel electrophoresis for the analysis of proteins. J Chromatogr A 2022; 1682:463453. [DOI: 10.1016/j.chroma.2022.463453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
|
5
|
Liu Y, Xia L, Xiao X, Li G. An integrated plastic microchip for enhancing electrophoretic separation using tunable pressure-driven backflows. Electrophoresis 2022; 43:892-900. [PMID: 35020208 DOI: 10.1002/elps.202100315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022]
Abstract
Microfluidic CE (MCE) is an effective solution for rapid and sensitive determination of multiple analytes. Herein, a dynamic coated cyclic olefin copolymer microchip was developed having an on-chip micropump for fluid velocity adjusting in electrophoretic separations. This micropump was fabricated by constructing a polyacrylamide gel membrane at one channel terminal. Once applying electric field across the membrane, a pressure-driven flow generated automatically to balance the electroosmotic flow (EOF) mismatch at the channel-membrane interface. The influence of gel precursor concentration and operating voltages on the fluid velocity was carefully evaluated. Moreover, the highly integration of injection, separation, and pumping units of the MCE system minimized the dead volume and provides satisfied column efficiency. Experiments showed that by adjusting of pumping voltage reduced the fluid velocity by a factor of 6, resulting six- and threefold resolving power enhancements of rhodamine dye mixture and amino acid mixture, respectively. Furthermore, the developed MCE method was applied for rhodamines and amino acids quantitation in food and cosmetics, with standard addition recoveries of 87.3-106.9% and 89.9-117.4%, respectively. These results were also confirmed by standard HPLC method, revealing the application potential in fast and onsite analysis of complex samples.
Collapse
Affiliation(s)
- Yulan Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
6
|
Wang M, Gong Q, Liu W, Tan S, Xiao J, Chen C. Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical and food analysis (2019-2021). J Sep Sci 2022; 45:1918-1941. [PMID: 35325510 DOI: 10.1002/jssc.202100727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
So far, the potential of capillary electrophoresis (CE) in the application fields has been increasingly excavated due to the advantages of simple operation, short analysis time, high-resolution, less sample consumption and low cost. This review examines the implementations and advancements of CE in different application fields (environmental, pharmaceutical, clinical and food analysis) covering the literature from 2019 to 2021. In addition, ultrasmall sample injection volume (nanoliter range) and short optical path lead to relatively low concentration sensitivity of the most frequently used UV-absorption spectrophotometric detection, so the pretreatment technology being developed has been gradually utilized to overcome this problem. Despite the review is focused on the development of CE in the fields of environmental, pharmaceutical, clinical and food analysis, the new sample pretreatment techniques of microextraction and enrichment which fit excellently to CE in recent three years are also described briefly. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengyao Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Qian Gong
- Department of Pharmacy, Hunan Cancer Hospital/ The Affiliated Cancer Hospital of School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
7
|
Štěpánová S, Kašička V. Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021) – A review. Anal Chim Acta 2022; 1209:339447. [DOI: 10.1016/j.aca.2022.339447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
|
8
|
Gstöttner C, Hook M, Christopeit T, Knaupp A, Schlothauer T, Reusch D, Haberger M, Wuhrer M, Domínguez-Vega E. Affinity Capillary Electrophoresis-Mass Spectrometry as a Tool to Unravel Proteoform-Specific Antibody-Receptor Interactions. Anal Chem 2021; 93:15133-15141. [PMID: 34739220 PMCID: PMC8600502 DOI: 10.1021/acs.analchem.1c03560] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monoclonal antibody (mAb) pharmaceuticals consist of a plethora of different proteoforms with different functional characteristics, including pharmacokinetics and pharmacodynamics, requiring their individual assessment. Current binding techniques do not distinguish between coexisting proteoforms requiring tedious production of enriched proteoforms. Here, we have developed an approach based on mobility shift-affinity capillary electrophoresis-mass spectrometry (ACE-MS), which permitted us to determine the binding of coexisting mAb proteoforms to Fc receptors (FcRs). For high-sensitivity MS analysis, we used a sheathless interface providing adequate mAb sensitivity allowing functional characterization of mAbs with a high sensitivity and dynamic range. As a model system, we focused on the interaction with the neonatal FcR (FcRn), which determines the half-life of mAbs. Depending on the oxidation status, proteoforms exhibited different electrophoretic mobility shifts in the presence of FcRn, which could be used to determine their affinity. We confirmed the decrease of the FcRn affinity with antibody oxidation and observed a minor glycosylation effect, with higher affinities for galactosylated glycoforms. Next to relative binding, the approach permits the determination of individual KD values in solution resulting in values of 422 and 139 nM for double-oxidized and non-oxidized variants. Hyphenation with native MS provides unique capabilities for simultaneous heterogeneity assessment for mAbs, FcRn, and complexes formed. The latter provides information on binding stoichiometry revealing 1:1 and 1:2 for antibody/FcRn complexes. The use of differently engineered Fc-only constructs allowed distinguishing between symmetric and asymmetric binding. The approach opens up unique possibilities for proteoform-resolved antibody binding studies to FcRn and can be extended to other FcRs and protein interactions.
Collapse
Affiliation(s)
- Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Michaela Hook
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Tony Christopeit
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Alexander Knaupp
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Markus Haberger
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| |
Collapse
|
9
|
Samarasinghe TN, Zeng Y, Johnson CK. Microchip Electrophoresis Assay for Calmodulin Binding Proteins. J Sep Sci 2021; 44:895-902. [PMID: 34321981 DOI: 10.1002/jssc.202000884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The calcium signaling protein calmodulin regulates numerous intracellular processes. We introduce a sensitive microchip assay to separate and detect calmodulin binding proteins. The assay utilizes an optimized microchip electrophoresis protein separation platform with laser-induced fluorescence detection. Fluorescence-labeled calmodulin modified with a photoreactive diazirine crosslinker allowed selective detection of calmodulin binding proteins. We demonstrate successful in-vitro crosslinking of calmodulin with two calmodulin binding proteins, calcineurin and nitric oxide synthase. We compare the efficacy of commonly applied electrophoretic separation modes: microchip capillary zone electrophoresis, microchip micellar electrokinetic chromatography/gel electrophoresis, and nanoparticle colloidal arrays. Out of the methods tested, polydymethylsiloxane/glass chips with microchip zone electrophoresis gave the poorest separation, whereas sieving methods in which electro-osmotic flow was suppressed gave the best separation of photoproducts of calmodulin conjugated with calmodulin binding proteins.
Collapse
Affiliation(s)
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Carey K Johnson
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
10
|
Trindade F, Barros AS, Silva J, Vlahou A, Falcão-Pires I, Guedes S, Vitorino C, Ferreira R, Leite-Moreira A, Amado F, Vitorino R. Mining the Biomarker Potential of the Urine Peptidome: From Amino Acids Properties to Proteases. Int J Mol Sci 2021; 22:5940. [PMID: 34073067 PMCID: PMC8197949 DOI: 10.3390/ijms22115940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Native biofluid peptides offer important information about diseases, holding promise as biomarkers. Particularly, the non-invasive nature of urine sampling, and its high peptide concentration, make urine peptidomics a useful strategy to study the pathogenesis of renal conditions. Moreover, the high number of detectable peptides as well as their specificity set the ground for the expansion of urine peptidomics to the identification of surrogate biomarkers for extra-renal diseases. Peptidomics further allows the prediction of proteases (degradomics), frequently dysregulated in disease, providing a complimentary source of information on disease pathogenesis and biomarkers. Then, what does urine peptidomics tell us so far? In this paper, we appraise the value of urine peptidomics in biomarker research through a comprehensive analysis of all datasets available to date. We have mined > 50 papers, addressing > 30 different conditions, comprising > 4700 unique peptides. Bioinformatic tools were used to reanalyze peptide profiles aiming at identifying disease fingerprints, to uncover hidden disease-specific peptides physicochemical properties and to predict the most active proteases associated with their generation. The molecular patterns found in this study may be further validated in the future as disease biomarker not only for kidney diseases but also for extra-renal conditions, as a step forward towards the implementation of a paradigm of predictive, preventive and personalized (3P) medicine.
Collapse
Affiliation(s)
- Fábio Trindade
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
| | - António S. Barros
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
| | - Jéssica Silva
- iBiMED—Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
| | - Inês Falcão-Pires
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
| | - Sofia Guedes
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (S.G.); (R.F.); (F.A.)
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (S.G.); (R.F.); (F.A.)
| | - Adelino Leite-Moreira
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
| | - Francisco Amado
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (S.G.); (R.F.); (F.A.)
| | - Rui Vitorino
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
- iBiMED—Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal;
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (S.G.); (R.F.); (F.A.)
| |
Collapse
|
11
|
Farmerie L, Rustandi RR, Loughney JW, Dawod M. Recent advances in isoelectric focusing of proteins and peptides. J Chromatogr A 2021; 1651:462274. [PMID: 34090060 DOI: 10.1016/j.chroma.2021.462274] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/18/2022]
Abstract
This review article describes the significant recent advances in Isoelectric Focusing from the period 2015-2020. The review highlights the principles and common challenges faced in Isoelectric Focusing as well as its applications. This review also details the recent advances in various modes of Isoelectric Focusing in various platforms and future directions for the technique.
Collapse
Affiliation(s)
- Lily Farmerie
- Analytical Research & Development, Merck & Co., Inc., Kenilworth, NJ, USA; Pennsylvania State University, College of Engineering, University Park, PA, USA
| | - Richard R Rustandi
- Analytical Research & Development, Merck & Co., Inc., Kenilworth, NJ, USA
| | - John W Loughney
- Analytical Research & Development, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Mohamed Dawod
- Analytical Research & Development, Merck & Co., Inc., Kenilworth, NJ, USA.
| |
Collapse
|
12
|
Vitorino R, Guedes S, da Costa JP, Kašička V. Microfluidics for Peptidomics, Proteomics, and Cell Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1118. [PMID: 33925983 PMCID: PMC8145566 DOI: 10.3390/nano11051118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Microfluidics is the advanced microtechnology of fluid manipulation in channels with at least one dimension in the range of 1-100 microns. Microfluidic technology offers a growing number of tools for manipulating small volumes of fluid to control chemical, biological, and physical processes relevant to separation, analysis, and detection. Currently, microfluidic devices play an important role in many biological, chemical, physical, biotechnological and engineering applications. There are numerous ways to fabricate the necessary microchannels and integrate them into microfluidic platforms. In peptidomics and proteomics, microfluidics is often used in combination with mass spectrometric (MS) analysis. This review provides an overview of using microfluidic systems for peptidomics, proteomics and cell analysis. The application of microfluidics in combination with MS detection and other novel techniques to answer clinical questions is also discussed in the context of disease diagnosis and therapy. Recent developments and applications of capillary and microchip (electro)separation methods in proteomic and peptidomic analysis are summarized. The state of the art of microchip platforms for cell sorting and single-cell analysis is also discussed. Advances in detection methods are reported, and new applications in proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices and determination of their physicochemical parameters are highlighted.
Collapse
Affiliation(s)
- Rui Vitorino
- UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4785-999 Porto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, 00351234 Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - João Pinto da Costa
- Department of Chemistry & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 00351234 Aveiro, Portugal;
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemigovo n. 542/2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
13
|
Samarasinghe TN, Zeng Y, Johnson CK. Comparison of separation modes for microchip electrophoresis of proteins. J Sep Sci 2020; 44:744-751. [PMID: 33226183 DOI: 10.1002/jssc.202000883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Separation of a set of model proteins was tested on a microchip electrophoresis analytical platform capable of sample injection by two different electrokinetic mechanisms. A range of separation modes-microchip capillary zone electrophoresis, microchip micellar electrokinetic chromatography, and nanoparticle-based sieving-was tested on glass and polydimethylsiloxane/glass microchips and with silica-nanoparticle colloidal arrays. The model proteins calmodulin (18 kiloDalton), bovine serum albumin (66 kDa), and concanavalin (106 kDa) were labeled with Alexa Fluor 647 for laser-induced fluorescence detection. The best separation and resolution were obtained in a silica-nanoparticle colloidal array chip.
Collapse
Affiliation(s)
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Carey K Johnson
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
14
|
Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci 2020; 44:211-246. [DOI: 10.1002/jssc.202000936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shannon L. Thomas
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Jonathan B. Thacker
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Kevin A. Schug
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| |
Collapse
|
15
|
Ragab MAA, El-Kimary EI. Recent Advances and Applications of Microfluidic Capillary Electrophoresis: A Comprehensive Review (2017-Mid 2019). Crit Rev Anal Chem 2020; 51:709-741. [PMID: 32447968 DOI: 10.1080/10408347.2020.1765729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microfluidic capillary electrophoresis (MCE) is the novel technique resulted from the CE mininaturization as planar separation and analysis device. This review presents and discusses various application fields of this advanced technology published in the period 2017 till mid-2019 in eight different sections including clinical, biological, single cell analysis, environmental, pharmaceuticals, food analysis, forensic and ion analysis. The need for miniaturization of CE and the consequence advantages achieved are also discussed including high-throughput, miniaturized detection, effective separation, portability and the need for micro- or even nano-volume of samples. Comprehensive tables for the MCE applications in the different studied fields are provided. Also, figure comparing the number of the published papers applying MCE in the eight discussed fields within the studied period is included. The future investigation should put into consideration the possibility of replacing conventional CE with the MCE after proper validation. Suitable validation parameters with their suitable accepted ranges should be tailored for analysis methods utilizing such unique technique (MCE).
Collapse
Affiliation(s)
- Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| | - Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| |
Collapse
|
16
|
Arvin NE, Dawod M, Lamb DT, Anderson JP, Furtaw MD, Kennedy RT. Fast Immunoassay for Microfluidic Western Blotting by Direct Deposition of Reagents onto Capture Membrane. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:1606-1616. [PMID: 32661464 PMCID: PMC7357712 DOI: 10.1039/d0ay00207k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Western blotting is a widely used protein assay platform, but the technique requires long analysis times and multiple manual steps. Microfluidic systems are currently being explored for increased automation and reduction of analysis times, sample volumes, and reagent consumption for western blots. Previous work has demonstrated that proteins separated by microchip electrophoresis can be captured on membranes by dragging the microchip outlet across the membrane. This process reduces the separation and transfer time of a western blot to a few minutes. To further improve the speed and miniaturization of a complete western blot, a microscale immunoassay with direct deposition of immunoassay reagents has been developed. Flow deposition of antibodies is used to overcome diffusion limited binding kinetics so that the entire immunoassay can be completed in 1 h with detection sensitivity comparable to incubation steps requiring 20 h. The use of low microliter/min flow rates with antibody reagents applied directly and locally to the membrane where the target proteins have been captured, reduced antibody consumption ~30-fold. The complete western blot was applied to the detection of GAPDH and β-Tubulin from A431 cell lysate.
Collapse
Affiliation(s)
- Natalie E. Arvin
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
- Vaccine Analytical R&D, Merck Research Laboratories, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Don T. Lamb
- LI-COR Biosciences, 4647 Superior St., Lincoln, Nebraska 68504, United States
| | - Jon P. Anderson
- LI-COR Biosciences, 4647 Superior St., Lincoln, Nebraska 68504, United States
| | - Michael D. Furtaw
- LI-COR Biosciences, 4647 Superior St., Lincoln, Nebraska 68504, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109, United States
- Corresponding author: Robert T. Kennedy, , Tel: 734-615-4363, Fax: 745-615-6462
| |
Collapse
|
17
|
Yang J, Zhao S, Zhao D, Huang Y, Liu X, Hu W, Liu B. A capillary electrophoresis strategy to sensitively detect dynamic properties of coiled coil polypeptides. J Sep Sci 2020; 43:2201-2208. [DOI: 10.1002/jssc.202000137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Yang
- Innovation Institute for Biomedical Materials, College of Life Science and ChemistryWuhan Donghu University Wuhan P. R. China
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Sun‐Duo Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Dong‐Hui Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Yan Huang
- Innovation Institute for Biomedical Materials, College of Life Science and ChemistryWuhan Donghu University Wuhan P. R. China
| | - Xiao‐Xia Liu
- Innovation Institute for Biomedical Materials, College of Life Science and ChemistryWuhan Donghu University Wuhan P. R. China
| | - Wei Hu
- Innovation Institute for Biomedical Materials, College of Life Science and ChemistryWuhan Donghu University Wuhan P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| |
Collapse
|
18
|
Analytical challenges and advancements in bioanalysis of therapeutic proteins. Bioanalysis 2020; 12:207-209. [DOI: 10.4155/bio-2020-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Ou X, Chen P, Huang X, Li S, Liu B. Microfluidic chip electrophoresis for biochemical analysis. J Sep Sci 2019; 43:258-270. [DOI: 10.1002/jssc.201900758] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti‐Cancer Active IngredientsCollege of Chemistry and Life ScienceHubei University of Education Wuhan P. R. China
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Xizhi Huang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Bi‐Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| |
Collapse
|
20
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
21
|
Veerabhadrappa B, Delaby C, Hirtz C, Vialaret J, Alcolea D, Lleó A, Fortea J, Santosh MS, Choubey S, Lehmann S. Detection of amyloid beta peptides in body fluids for the diagnosis of alzheimer's disease: Where do we stand? Crit Rev Clin Lab Sci 2019; 57:99-113. [PMID: 31661652 DOI: 10.1080/10408363.2019.1678011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease characterized by progressive decline of cognitive abilities. Amyloid beta peptides (Aβ), Tau proteins and the phosphorylated form of the Tau protein, p-Tau, are the core pathological biomarkers of the disease, and their detection for the diagnosis of patients is progressively being implemented. However, to date, their quantification is mostly performed on cerebrospinal fluid (CSF), the collection of which requires an invasive lumbar puncture. Early diagnosis has been shown to be important for disease-modifying treatment, which is currently in development, to limit the progression of the disease. Nevertheless, the diagnosis is often delayed to the point where the disease has already progressed, and the tools currently available do not allow for a systematic follow-up of patients. Thus, the search for a molecular signature of AD in a body fluid such as blood or saliva that can be collected in a minimally invasive way offers hope. A number of methods have been developed for the quantification of core biomarkers, especially in easily accessible fluids such as the blood, that improve their accuracy, specificity and sensitivity. This review summarizes and compares these approaches, focusing in particular on their use for Aβ detection, the earliest biomarker to be modified in the course of AD. The review also discusses biomarker quantification in CSF, blood and saliva and their clinical applications.
Collapse
Affiliation(s)
- Bhavana Veerabhadrappa
- Center for Incubation Innovation Research and Consultancy (CIIRC), Jyothy Institute of Technology, Bengaluru, India
| | - Constance Delaby
- INSERM U1183, Laboratoire de Biochimie-Protéomique Clinique, CHU de Montpellier, Université de Montpellier, Montpellier, France.,Sant Pau Memory Unit, Department of Neurology, Institut D'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christophe Hirtz
- INSERM U1183, Laboratoire de Biochimie-Protéomique Clinique, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Jérôme Vialaret
- INSERM U1183, Laboratoire de Biochimie-Protéomique Clinique, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Institut D'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Institut D'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Institut D'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mysore Sridhar Santosh
- Center for Incubation Innovation Research and Consultancy (CIIRC), Jyothy Institute of Technology, Bengaluru, India
| | | | - Sylvain Lehmann
- INSERM U1183, Laboratoire de Biochimie-Protéomique Clinique, CHU de Montpellier, Université de Montpellier, Montpellier, France
| |
Collapse
|
22
|
Kahle J, Zagst H, Wiesner R, Wätzig H. Comparative charge-based separation study with various capillary electrophoresis (CE) modes and cation exchange chromatography (CEX) for the analysis of monoclonal antibodies. J Pharm Biomed Anal 2019; 174:460-470. [PMID: 31228849 DOI: 10.1016/j.jpba.2019.05.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
Charge heterogeneity is an important critical quality attribute for the analysis of monoclonal antibodies (mAbs). For this, (imaged) capillary isoelectric focusing ((i)cIEF), ion exchange chromatography (IEC) and, recently, capillary zone electrophoresis (CZE) are the predominantly used techniques. In order to investigate which one is most suitable to answer a specific analytical question, here, the four aforementioned separation techniques were systematically evaluated using NISTmAb and Infliximab as test molecules. The performance parameters (precision, separation efficiency, linearity and sensitivity) were determined under comparable conditions. Moreover, important aspects for daily routine such as speed and ease of use were considered. Each technique has its own pros and cons. The (i)cIEF methodology is distinguished by its excellent separation efficiency. In addition, the native fluorescence mode in icIEF is a good tool to analyze small sample amounts (LOQ: 2.8 mg/l for Infliximab). Nevertheless, high performance liquid chromatography (HPLC) still has superior precision. CZE, and also micellar electrokinetic chromatography (MEKC), have emerged as further interesting alternatives. For all techniques, variations connected to the sample preparation strongly influence precision. Looking at the relative standard deviation (RSD) values of the relative peak areas, all techniques provide acceptable performance (RSD: 0.6-1.6%).
Collapse
Affiliation(s)
- Julia Kahle
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Germany.
| | - Holger Zagst
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Germany.
| | - Rebecca Wiesner
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Germany.
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Germany; PVZ: Center of Pharmaceutical Process Engineering, Technische Universität Braunschweig, Germany.
| |
Collapse
|
23
|
Yu B, Peng Q, Usman M, Ahmed A, Chen Y, Chen X, Wang Y, Shen Y, Cong H. Preparation of photosensitive diazotized poly (vinyl alcohol-b-styrene) covalent capillary coatings for capillary electrophoresis separation of proteins. J Chromatogr A 2019; 1593:174-182. [PMID: 30745136 DOI: 10.1016/j.chroma.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 11/13/2022]
Abstract
In this paper, we have developed a novel method for the preparation of covalently connected capillary coatings in which diazotized poly (vinyl alcohol-b-styrene) (diazo-P(VA-b-St)) was used as a photosensitive coating agent. Firstly, the diazo-P(VA-b-St) coating was self-assembled on the inner surface of the capillary, and then irradiated by ultraviolet (UV) light to convert the ionic bonding into covalent bonding through the unique photochemical reaction of diazo groups. The covalently connected coatings inhibited the protein adsorption on the inner surface of the capillary, as a result, the baseline protein separation of ribonuclease A (RNase A), lysozyme (Lyz) and bovine serum albumin (BSA) were attained by utilizing the capillary electrophoresis (CE). The covalently connected diazo-P(VA-b-St) capillary coatings have greater CE separation performance with magnificent repeatability and enhanced stability, when compared with non-covalently coated or bare capillaries. This strategy to synthesize photosensitive diazo-P(VA-b-St) capillary coatings for their use in capillary electrophoresis separation of proteins is highly environment-friendly as it does not involve the use of extremely noxious and moisture penetrating coatings of silane.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao, 266071, China
| | - Qiaohong Peng
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Muhammad Usman
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Adeel Ahmed
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yao Chen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Xin Chen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yifan Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
24
|
Chen X, Hong F, Zhang W, Wu D, Li T, Hu F, Gan N, Lin J, Wang Q. Microchip electrophoresis based multiplexed assay for silver and mercury ions simultaneous detection in complex samples using a stirring bar modified with encoded hairpin probes for specific extraction. J Chromatogr A 2019; 1589:173-181. [PMID: 30635170 DOI: 10.1016/j.chroma.2019.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/14/2018] [Accepted: 01/03/2019] [Indexed: 02/04/2023]
Abstract
It is crucially important to rapidly, simultaneously, and sensitively determine trace amounts of heavy metal ions in complex samples. Herein, a stirring bar modified with two kinds of encoded hairpin DNA probes (H0 and H0') was used in a multiplexed strategy allowing for specific extraction of Hg2+ and Ag+ coupled to microchip electrophoresis (MCE) separation and LED induced fluorescence (LIF) detection. The extraction step utilizes stir bars, which are functionalized with designed hairpin DNA probes (H0 with TT and H0' with CC mismatches in stems). This allows the specific capture of Hg2+ and Ag+ through CAg+C and THg2+T interactions. These complexes are then enzymatically degraded by the action of exonuclease III (Exo III). The ions released during this enzymatic reaction can initiate a new cycle of interactions with hairpin structures and enzymatic reactions and so on. This cyclic step is specific to the presence of Hg2+ and Ag+ and represents the first round of amplification of the presence of the selected ions. The resulting single strand DNAs on the stirring bars after enzymatic degradation were used in the second step as primers to trigger the catalytic hairpin assembly (CHA) in the presence of a couple of hairpin structures in solution. Such a reaction allows producing duplexes that can be monitored by MCE-LIF. The fluorescence intensity of CHA products (IP) increased and that of hairpin DNAs (IR) decreased with the increase of target concentrations. The signal ratios (IP/IR and IP'/IR') consisted of targets. The assay was employed for Hg2+ and Ag+ detection in several mediums including water, milk, and fish samples with complex matrices. The results showed that the assay could avoid matrix interference to increase the sensitivity. Therefore, the multiplexed assay was ideal to simultaneously and quickly detect metal ions in complex samples.
Collapse
Affiliation(s)
- Xixue Chen
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Feng Hong
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Weilin Zhang
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Dazhen Wu
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Tianhua Li
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Futao Hu
- Faculty of marine, Ningbo University, Ningbo, 31521, China
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China.
| | - Jianyuan Lin
- Zhejiang Wanli University, Ningbo, 315100, China.
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
GAMA MARIANAR, MELCHERT WANESSAR, PAIXÃO THIAGOR, ROCHA FÁBIOR. An overview of the Brazilian contributions to Green Analytical Chemistry. ACTA ACUST UNITED AC 2019; 91:e20180294. [DOI: 10.1590/0001-3765201920180294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
|
26
|
Comparison of imaged capillary isoelectric focusing and cation exchange chromatography for monitoring dextrose-mediated glycation of monoclonal antibodies in infusion solutions. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105:156-163. [DOI: 10.1016/j.jchromb.2018.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/19/2022]
|
27
|
Štěpánová S, Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015-mid 2018). J Sep Sci 2018; 42:398-414. [DOI: 10.1002/jssc.201801090] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague 6 Czechia
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague 6 Czechia
| |
Collapse
|
28
|
Rastogi S, Shukla S, Kalaivani M, Singh GN. Peptide-based therapeutics: quality specifications, regulatory considerations, and prospects. Drug Discov Today 2018; 24:148-162. [PMID: 30296551 DOI: 10.1016/j.drudis.2018.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 01/17/2023]
Abstract
Exquisite selectivity, remarkable efficacy, and minimal toxicity are key attributes inherently assigned to peptides, resulting in increased research interest from the pharmaceutical industry in peptide-based therapeutics (PbTs). Pharmacopoeias develop authoritative standards for PbT by providing standard specifications and test methods. Nevertheless, a lack of harmonization in test procedures adopted for PbT in the latest editions of Pharmacopoeias has been observed. Adoption of a harmonized monograph could increase further the interest of the global pharmaceutical industry in PbTs. Here, we provide an overview of pharmacopoeial methodologies and specifications commonly observed in PbT monographs and highlight the main differences among the pharmacopoeias in terms of the active pharmaceutical ingredients that they focus on. We also address the prospects for PbTs to mature as a new therapeutic niche.
Collapse
Affiliation(s)
- Shruti Rastogi
- Analytical Research & Development, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India
| | - Shatrunajay Shukla
- Medical Devices & Materiovigilance, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India.
| | - M Kalaivani
- Biologics, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Govt. of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India
| | - Gyanendra Nath Singh
- Analytical Research & Development, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India; Medical Devices & Materiovigilance, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India; Biologics, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Govt. of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India; Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, UP, India
| |
Collapse
|
29
|
Nys G, Fillet M. Microfluidics contribution to pharmaceutical sciences: From drug discovery to post marketing product management. J Pharm Biomed Anal 2018; 159:348-362. [DOI: 10.1016/j.jpba.2018.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022]
|
30
|
Xiao MW, Bai XL, Liu YM, Yang L, Hu YD, Liao X. Rapid quantification of aloin A and B in aloe plants and aloe-containing beverages, and pharmaceutical preparations by microchip capillary electrophoresis with laser induced fluorescence detection. J Sep Sci 2018; 41:3772-3781. [PMID: 30152917 DOI: 10.1002/jssc.201800338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
A microchip capillary electrophoresis coupled with laser induced fluorescence detection method for the fast determination of aloin was developed and comprehensively applied for the quantification of aloin A and B present in seven aloe plant species, 42 aloin-containing crude drugs, ten aloe pharmaceutical preparations, and four aloe gel-containing functional foods. The excitation and emission wavelengths for detection of both aloins were set at 473 and 520 nm, respectively. Sample analysis on a 35 mm length of glass microchip channel was completed within 40 s. An interference study indicated that the other main anthraquinones present in the samples did not interrupt with the target aloins detection, demonstrating the good selectivity of this method. It is demonstrated that this method is fast, facile, and specific for determination of aloin A and B from matrix samples which can be applied to the quality control of a wide varieties of aloe species and aloe-derived products.
Collapse
Affiliation(s)
- Meng-Wei Xiao
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiao-Lin Bai
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, P. R. China
| | - Yi-Ming Liu
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, P. R. China.,Department of Chemistry and Biochemistry, Jackson State University, Jackson, USA
| | - Li Yang
- Sichuan Maccura Biotechnology, Chengdu, P. R. China
| | - Ya-Dong Hu
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, P. R. China
| | - Xun Liao
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, P. R. China
| |
Collapse
|
31
|
Šlampová A, Malá Z, Gebauer P. Recent progress of sample stacking in capillary electrophoresis (2016-2018). Electrophoresis 2018; 40:40-54. [PMID: 30073675 DOI: 10.1002/elps.201800261] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
Electrophoretic sample stacking comprises a group of capillary electrophoretic techniques where trace analytes from the sample are concentrated into a short zone (stack). This paper is a continuation of our previous reviews on the topic and brings a survey of more than 120 papers published approximately since the second quarter of 2016 till the first quarter of 2018. It is organized according to the particular stacking principles and includes chapters on concentration adjustment (Kohlrausch) stacking, on stacking techniques based on pH changes, on stacking in electrokinetic chromatography and on other stacking techniques. Where available, explicit information is given about the procedure, electrolyte(s) used, detector employed and sensitivity reached. Not reviewed are papers on transient isotachophoresis which are covered by another review in this issue.
Collapse
Affiliation(s)
- Andrea Šlampová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Zdena Malá
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
32
|
Wuethrich A, Quirino JP. A decade of microchip electrophoresis for clinical diagnostics - A review of 2008-2017. Anal Chim Acta 2018; 1045:42-66. [PMID: 30454573 DOI: 10.1016/j.aca.2018.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 01/10/2023]
Abstract
A core element in clinical diagnostics is the data interpretation obtained through the analysis of patient samples. To obtain relevant and reliable information, a methodological approach of sample preparation, separation, and detection is required. Traditionally, these steps are performed independently and stepwise. Microchip capillary electrophoresis (MCE) can provide rapid and high-resolution separation with the capability to integrate a streamlined and complete diagnostic workflow suitable for the point-of-care setting. Whilst standard clinical diagnostics methods normally require hours to days to retrieve specific patient data, MCE can reduce the time to minutes, hastening the delivery of treatment options for the patients. This review covers the advances in MCE for disease detection from 2008 to 2017. Miniaturised diagnostic approaches that required an electrophoretic separation step prior to the detection of the biological samples are reviewed. In the two main sections, the discussion is focused on the technical set-up used to suit MCE for disease detection and on the strategies that have been applied to study various diseases. Throughout these discussions MCE is compared to other techniques to create context of the potential and challenges of MCE. A comprehensive table categorised based on the studied disease using MCE is provided. We also comment on future challenges that remain to be addressed.
Collapse
Affiliation(s)
- Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Building 75, Brisbane, QLD, 4072, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia.
| |
Collapse
|
33
|
Malá Z, Gebauer P. Recent progress in analytical capillary isotachophoresis. Electrophoresis 2018; 40:55-64. [DOI: 10.1002/elps.201800239] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Zdena Malá
- Institute of Analytical Chemistry of the Czech Academy of Sciences; Brno Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry of the Czech Academy of Sciences; Brno Czech Republic
| |
Collapse
|
34
|
Zhang Y, Wang Y, Sosic Z, Zang L, Bergelson S, Zhang W. Identification of adeno-associated virus capsid proteins using ZipChip CE/MS. Anal Biochem 2018; 555:22-25. [DOI: 10.1016/j.ab.2018.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
|
35
|
Kahle J, Wätzig H. Determination of protein charge variants with (imaged) capillary isoelectric focusing and capillary zone electrophoresis. Electrophoresis 2018; 39:2492-2511. [DOI: 10.1002/elps.201800079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Julia Kahle
- Technische Universität Braunschweig; Institute of Medicinal and Pharmaceutical Chemistry; Braunschweig Germany
| | - Hermann Wätzig
- Technische Universität Braunschweig; Institute of Medicinal and Pharmaceutical Chemistry; Braunschweig Germany
| |
Collapse
|
36
|
Li P, Wang S, Zhang R, Pei J, Chen L, Cao Y, Zhang H, Yang G. Identification of CSF biomarkers by proteomics in Guillain-Barré syndrome. Exp Ther Med 2018; 15:5177-5182. [PMID: 29904402 PMCID: PMC5996704 DOI: 10.3892/etm.2018.6117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/23/2017] [Indexed: 12/20/2022] Open
Abstract
The purpose of the present study was to screen for differentially expressed proteins in the cerebrospinal fluid (CSF) of patients with Guillain-Barré syndrome (GBS). The identification of differentially expressed protein can provide new targets for understanding the pathogenic mechanism, early clinical diagnosis, prognosis and for measuring the effectiveness of interventions. We enrolled 50 GBS patients and 50 meningitis patients (control group) to compare protein expression in CSF. The GBS cases included 28 cases of acute inflammatory demyelinating polyneuropathy (AIDP) and 22 cases of acute motor axonal neuropathy (AMAN). We then performed two-dimensional differential in-gel electrophoresis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to identify the differentially expressed proteins. The expression levels were validated by ELISA, and their accuracy, sensitivity, and specificity in GBS diagnosis were analyzed by the receiver operating characteristic curve. Three differentially expressed proteins were identified, including the upregulated haptoglobin (Hp) and heat shock protein 70 (Hsp70), and downregulated cystatin C. There were no significant differences between the AIDP and AMAN patients in the positive rates and quantitative expression levels of the three differentially expressed proteins. The accuracy of Hp in the diagnosis of GBS was 0.835, sensitivity was 86.7%, and specificity was 88.2%. The accuracy of cystatin C in the diagnosis of GBS was 0.827, sensitivity was 85.5%, and specificity was 89.7%. The accuracy of Hsp70 in the diagnosis of GBS was 0.841, its sensitivity was 87.8%, and its specificity was 92.3%. Hp and Hsp70 are significantly increased, and cystatin C is downregulated in CSF of GBS patients, which provides important biomarkers for early GBS diagnosis, although these proteins cannot distinguish AIDP and AMAN.
Collapse
Affiliation(s)
- Pei Li
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Sujie Wang
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Ruili Zhang
- Department of Neurology, Zunhua People's Hospital, Tangshan, Hebei 064200, P.R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Lili Chen
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yibin Cao
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Haoliang Zhang
- Department of Radiotherapy and Chemotherapy, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Guofeng Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
37
|
Chung S, Tian J, Tan Z, Chen J, Lee J, Borys M, Li ZJ. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26587] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Chung
- Department of Chemical Engineering; Northeastern University; Boston Massachusetts
| | - Jun Tian
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zhijun Tan
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jie Chen
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jongchan Lee
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Michael Borys
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| |
Collapse
|
38
|
Xie SF, Gao H, Niu LL, Xie ZS, Fang F, Wu ZY, Yang FQ. Carrier ampholyte-free isoelectric focusing on a paper-based analytical device for the fractionation of proteins. J Sep Sci 2018; 41:2085-2091. [DOI: 10.1002/jssc.201701438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Song-Fang Xie
- Research Center for Analytical Science; Chemistry Department; College of Sciences; Northeastern University; Shenyang P. R. China
| | - Han Gao
- Research Center for Analytical Science; Chemistry Department; College of Sciences; Northeastern University; Shenyang P. R. China
| | - Li-Li Niu
- The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Zhen-Sheng Xie
- The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Fang Fang
- Research Center for Analytical Science; Chemistry Department; College of Sciences; Northeastern University; Shenyang P. R. China
| | - Zhi-Yong Wu
- Research Center for Analytical Science; Chemistry Department; College of Sciences; Northeastern University; Shenyang P. R. China
| | - Fu-Quan Yang
- The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
39
|
Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Anal Bioanal Chem 2018; 410:3425-3444. [PMID: 29353433 DOI: 10.1007/s00216-018-0852-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022]
Abstract
Interest in research into bioactive peptides (BPs) is growing because of their health-promoting ability. Several bioactivities have been ascribed to peptides, including antioxidant, antihypertensive and antimicrobial properties. As they can be produced from precursor proteins, the investigation of BPs in foods is becoming increasingly popular. For the same reason, production of BPs from by-products has also emerged as a possible means of reducing waste and recovering value-added compounds suitable for functional food production and supplements. Milk, meat and fish are the most investigated sources of BPs, but vegetable-derived peptides are also of interest. Vegetables are commonly consumed, and agro-industrial wastes constitute a cheap, large and lower environmental impact source of proteins. The use of advanced analytical techniques for separation and identification of peptides would greatly benefit the discovery of new BPs. In this context, this review provides an overview of the most recent applications in BP investigations for vegetable food and by-products. The most important issues regarding peptide isolation and separation, by single or multiple chromatographic techniques, are discussed. Additionally, problems connected with peptide identification in plants and non-model plants are discussed regarding the particular case of BP identification. Finally, the issue of peptide validation to confirm sequence and bioactivity is presented. Graphical representation of the analytical workflow needed for investigation of bioactive peptides and applied to vegetables and vegetable wastes Graphical Abstract.
Collapse
|
40
|
Rodríguez-Ruiz I, Babenko V, Martínez-Rodríguez S, Gavira JA. Protein separation under a microfluidic regime. Analyst 2017; 143:606-619. [PMID: 29214270 DOI: 10.1039/c7an01568b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lab-on-a-Chip (LoC), or micro-Total Analysis Systems (μTAS), is recognized as a powerful analytical technology with high capabilities, though end-user products for protein purification are still far from being available on the market. Remarkable progress has been achieved in the separation of nucleic acids and proteins using electrophoretic microfluidic devices, while pintsize devices have been developed for protein isolation according to miniaturized chromatography principles (size, charge, affinity, etc.). In this work, we review the latest advances in the fabrication of components, detection methods and commercial implementation for the separation of biological macromolecules based on microfluidic systems, with some critical remarks on the perspectives of their future development towards standardized microfluidic systems and protocols. An outlook on the current needs and future applications is also presented.
Collapse
Affiliation(s)
| | - V Babenko
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| | - S Martínez-Rodríguez
- Department of Biochemistry and Molecular Biology III and Immunology. University of Granada, Granada, Spain
| | - J A Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| |
Collapse
|
41
|
Quirino JP. A cationic β‐cyclodextrin as a dynamic coating for the separation of proteins in capillary electrophoresis. J Sep Sci 2017; 40:4835-4838. [DOI: 10.1002/jssc.201700610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Joselito P. Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences—Chemistry University of Tasmania Sandy Bay Tasmania Australia
| |
Collapse
|
42
|
Wang W, Bai R, Cai X, Lin P, Ma L. Separation and determination of peptide metabolite of Bacillus licheniformis
in a microbial fuel cell by high-speed capillary micellar electrokinetic chromatography. J Sep Sci 2017; 40:4446-4452. [DOI: 10.1002/jssc.201700656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou P. R. China
| | - Ruiguang Bai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| | - Xiaoyu Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| | - Ping Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| | - Lihong Ma
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology; School of Chemistry; Fuzhou University; Fuzhou P. R. China
| |
Collapse
|
43
|
Liang S, Fu X, Xiao H, Li T, Xu J, Zhang Y. Strategy for the separation of concentrated samples by capillary electrophoresis. J Sep Sci 2017; 40:3734-3739. [DOI: 10.1002/jssc.201700512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Shuang Liang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin China
| | - Xia Fu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin China
| | - Hongting Xiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin China
| | - Tianxiang Li
- Tianjin University of Traditional Chinese Medicine; Tianjin China
| | - Jun Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin China
| | - Yong Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|
44
|
Wang Z, Ivory C, Minerick AR. Surface isoelectric focusing (sIEF) with carrier ampholyte pH gradient. Electrophoresis 2017; 38:2565-2575. [PMID: 28722147 DOI: 10.1002/elps.201600565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Abstract
Isoelectric focusing (IEF) is a powerful tool for amphoteric protein separations because of high sensitivity, bio-compatibility, and reduced complexity compared to chromatography or mechanical separation techniques. IEF miniaturization is attractive because it enables rapid analysis, easier adaptation to point of care applications, and smaller sample demands. However, existing small-scale IEF tools have not yet been able to analyze single protein spots from array libraries, which are ubiquitous in many pharmaceutical discovery and screening protocols. Thus, we introduce an in situ, novel, miniaturized protein analysis approach that we have termed surface isoelectric focusing (sIEF). Low volume printed sIEF gels can be run at length scales of ∼300 μm, utilize ∼0.9 ng of protein with voltages below 10 V. Further, the sIEF device platform is so simple that it can be integrated with protein library arrays to reduce cost; devices demonstrate reusability above 50 uses. An acrylamide monomer solution containing broad-range carrier ampholytes was microprinted with a Nano eNablerTM between micropatterned gold electrodes spaced 300 μm apart on a glass slide. The acrylamide gel was polymerized in situ followed by protein loading via printed diffusional exchange. A pH gradient formed via carrier ampholyte stacking when electrodes were energized; the gradient was verified using ratiometric pH-sensitive FITC/TRITC dyes. Green fluorescent protein (GFP) and R-phycoerythrin (R-PE) were utilized both as pI markers and to test sIEF performance as a function of electric field strength and ampholyte concentration. Factors hampering sIEF included cathodic drift and pH gradient compression, but were reduced by co-printing non-ionic Synperonic® F-108 surfactant to reduce protein-gel interactions. sIEF gels achieved protein separations in <10 min yielding bands < 50 μm wide with peak capacities of ∼8 and minimum pI differences from 0.12 to 0.14. This new sIEF technique demonstrated comparable focusing at ∼100 times smaller dimensions than any previous IEF. Further, sample volumes required were reduced four orders of magnitude from 20 μL for slab gel IEF to 0.002 μL for sIEF. In summary, sIEF advantages include smaller volumes, reduced power consumption, and microchip surface accessibility to focused bands along with equivalent separation resolutions to prior IEF tools. These attributes position this new technology for rapid, in situ protein library analysis in clinical and pharmaceutical settings.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Cornelius Ivory
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Adrienne R Minerick
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
45
|
Daria D, Liudmila K, Gennady E. Highly fluorinated polymers with sulfonate, sulfamide and N
,N
-diethylamino groups for the capillary electromigration separation of proteins and steroid hormones. J Sep Sci 2017; 40:3335-3342. [DOI: 10.1002/jssc.201700283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Dzema Daria
- Saint Petersburg State University; Institute of chemistry; Saint Petersburg Russia
| | - Kartsova Liudmila
- Saint Petersburg State University; Institute of chemistry; Saint Petersburg Russia
| | | |
Collapse
|
46
|
Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017; 142:1847-1866. [PMID: 28470231 PMCID: PMC5516626 DOI: 10.1039/c7an00198c] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article describes the significant recent advances in the analysis of proteins by capillary and microchip electrophoresis during the period from mid-2014 to early 2017. This review highlights the progressions, new methodologies, innovative instrumental modifications, and challenges for efficient protein analysis in human specimens, animal tissues, and plant samples. The protein analysis fields covered in this review include analysis of native, reduced, and denatured proteins in addition to Western blotting, protein therapeutics and proteomics.
Collapse
Affiliation(s)
- Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
47
|
Pergande MR, Cologna SM. Isoelectric Point Separations of Peptides and Proteins. Proteomes 2017; 5:proteomes5010004. [PMID: 28248255 PMCID: PMC5372225 DOI: 10.3390/proteomes5010004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/03/2017] [Accepted: 01/08/2017] [Indexed: 12/20/2022] Open
Abstract
The separation of ampholytic components according to isoelectric point has played an important role in isolating, reducing complexity and improving peptide and protein detection. This brief review outlines the basics of isoelectric focusing, including a summary of the historical achievements and considerations in experimental design. Derivative methodologies of isoelectric focusing are also discussed including common detection methods used. Applications in a variety of fields using isoelectric point based separations are provided as well as an outlook on the field for future studies.
Collapse
Affiliation(s)
- Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|