1
|
Gonçalves M, Costa M, Paiva-Martins F, Silva P. Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention. Molecules 2024; 29:4841. [PMID: 39459209 PMCID: PMC11510978 DOI: 10.3390/molecules29204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the potential health benefits and applications of phenolic secoiridoids derived from olive oil by-products in the prevention of Alzheimer's disease (AD). As reviewed herein, polyphenols, such as epigallocatechin-3-gallate, epicatechin, and resveratrol, show in vitro and in vivo antioxidant, anti-inflammatory, and neuroprotective properties, and are particularly relevant in the context of AD, a leading cause of dementia globally. The olive oil industry, particularly in the Mediterranean region, produces significant amounts of waste, including leaves, pomace, and wastewater, which pose environmental challenges but also offer an untapped source of bioactive compounds. Despite promising in vitro and in vivo studies indicating that olive-derived polyphenols, such as oleuropein and hydroxytyrosol, may mitigate AD pathology, human clinical trials remain limited. The variability in extraction methods and the complex nature of AD further complicate research. Future studies should focus on standardizing the protocols and conducting robust clinical trials to fully assess the therapeutic potential of these compounds. This approach not only supports the development of new treatments for AD but also promotes environmental sustainability by valorizing olive oil industry waste.
Collapse
Affiliation(s)
- Marta Gonçalves
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
2
|
Gómez-Cruz I, Contreras MDM, Romero I, Castro E. Lower Energy-Demanding Extraction of Bioactive Triterpene Acids by Microwave as the First Step towards Biorefining Residual Olive Skin. Antioxidants (Basel) 2024; 13:1212. [PMID: 39456465 PMCID: PMC11504040 DOI: 10.3390/antiox13101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
In the olive oil industry, a pit fraction is collected from olive pomace and split into a clean pit fraction and a residual olive skin-rich fraction, which does not an industrial application. Therefore, in this work, microwave-assisted extraction (MAE) was applied to obtain high-value triterpene acids (maslinic acid and oleanolic acid) from this biomass using the renewable solvent ethanol. The response surface methodology was used to gain a deeper understanding of how the solvent (ethanol-water, 50-100% v/v), time (4-30 min), and temperature (50-120 °C) affect the extraction performance, as well as the energy required for the process. The effect of milling was also studied and the solid-to-liquid ratio was also evaluated, and overall, a good compromise was found at 10% (w/v) using the raw sample (unmilled biomass). The optimised conditions were applied to residual olive skin sourced from various industries, yielding up to 5.1 g/100 g and 2.2 g/100 g dry biomass for maslinic acid and oleanolic acid, respectively. In conclusion, the residual olive skin is a promising natural source of these triterpene acids, which can be extracted using MAE, releasing extracted solids rich in polymeric carbohydrates and lignin that can be valorised under a holistic biorefinery process.
Collapse
Affiliation(s)
- Irene Gómez-Cruz
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
3
|
Wu Y, Liu Y, Jia Y, Feng CH, Zhang H, Ren F, Zhao G. Effects of thermal processing on natural antioxidants in fruits and vegetables. Food Res Int 2024; 192:114797. [PMID: 39147492 DOI: 10.1016/j.foodres.2024.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Research on the content of polyphenolic compounds in fruits and vegetables, the extraction of bioactive compounds, and the study of their impact on the human body has received growing attention in recent years. This is due to the great interest in bioactive compounds and their health benefits, resulting in increased market demand for natural foods. Bioactive compounds from plants are generally categorized as natural antioxidants with health benefits such as anti-inflammatory, antioxidant, anti-diabetic, anti-carcinogenic, etc. Thermal processing has been used in the food sector for a long history. Implementing different thermal processing methods could be essential in retaining the quality of the natural antioxidant compounds in plant-based foods. A comprehensive review is presented on the effects of thermal blanching (i.e., hot water, steam, superheated steam impingement, ohmic and microwave blanching), pasteurization, and sterilization and drying technologies on natural antioxidants in fruits and vegetables.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chao-Hui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Guoping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
4
|
Meng M, Ren J, Zhang C, Du W, Wang J. Polyvinylidene Fluoride-Based Nanowire-Imprinted Membranes with High Flux for Efficient and Selective Separation of Artemisinin/Artemether. Molecules 2024; 29:3868. [PMID: 39202947 PMCID: PMC11357418 DOI: 10.3390/molecules29163868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
A traditional phase transformation method is commonly used to prepare molecular imprinting membranes for selective separation. However, traditional molecularly imprinted polymers are mostly micron-sized particles, and the imprinting sites in their membrane are easily embedded, leading to a reduced adsorption capacity and decreased selectivity. In this study, an ultra-long nanowire with a diameter of about 15 nm was synthesized for the separation of artemisinin (ART), and its adsorption capacity was as high as 198.29 mg g-1 after imprinting polymerization. Molecular imprinting membranes were prepared, using polyvinylidene fluoride (PVDF), polyethersulfone (PES), and polysulfone (PSF) as the membrane matrix, for comparison. The average membrane pore size of PVDF-MIM was about 480 nm, and PVDF-MIM had the highest adsorption capacity (69 mg g-1) for ART. The optimal flow rate for PVDF-MIM's dynamic adsorption of ART was 7 mL min-1. Under this optimal flow rate, selectivity experiments were carried out to obtain the separation factor of PVDF-MIM (α = 8.37), which was much higher than the corresponding values of PES-MIM and PSF-MIM. In addition, the hydrophobicity and low flux of PES-MIM and PSF-MIM lead to higher non-specific adsorption. The hydrophobicity of PVDF-MIM is lower than that of PES-MIM and PSF-MIM, which greatly reduces the non-specific adsorption of the membrane, thus increasing the selectivity of the membranes. Therefore, the effective density of the imprinting sites in the pores and the membrane structure are the main factors determining the efficient separation of molecularly imprinted membranes.
Collapse
Affiliation(s)
- Minjia Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (J.R.); (C.Z.); (W.D.)
| | | | | | | | - Jixiang Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (J.R.); (C.Z.); (W.D.)
| |
Collapse
|
5
|
Medina-O’Donnell M, Vega-Granados K, Martinez A, Sepúlveda MR, Molina-Bolívar JA, Álvarez de Cienfuegos L, Parra A, Reyes-Zurita FJ, Rivas F. Synthesis, Optical Properties, and Antiproliferative Evaluation of NBD-Triterpene Fluorescent Probes. JOURNAL OF NATURAL PRODUCTS 2023; 86:166-175. [PMID: 36542806 PMCID: PMC9887599 DOI: 10.1021/acs.jnatprod.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 06/17/2023]
Abstract
A fluorescent labeling protocol for hydroxylated natural compounds with promising antitumor properties has been used to synthesize, in yields of 72-86%, 12 derivatives having fluorescent properties and biological activity. The reagent used for the synthesis of these fluorescent derivatives was 7-nitrobenzo-2-oxa-1,3-diazole chloride (NBD-Cl). The linkers employed to bind the NBD-Cl reagent to the natural compounds were ω-amino acids (Aa) of different chain lengths. The natural triterpene compounds chosen were oleanolic and maslinic acid, as their corresponding 28-benzylated derivatives. Thus, 12 NBD-Aa-triterpene conjugates have been studied for their optical fluorescence properties and their biological activities against cell proliferation in three cancer cell lines (B16-F10, HT-29, and HepG2), compared with three nontumor cell lines (HPF, IEC-18, and WRL68) from different tissues. The results of the fluorescence study have shown that the best fluorescent labels are those in which the ω-amino acid chain is shorter, and the carboxylic group is not benzylated. Analysis by confocal microscopy showed that these compounds were rapidly incorporated into cells in all three cancer cell lines, with these same derivatives showing the highest toxicity against the cancer cell lines tested. Then, the fluorescent labeling of these NBD-Aa-triterpene conjugates enabled their uptake and subcellular distribution to be followed in order to probe in detail their biological properties at the cellular and molecular level.
Collapse
Affiliation(s)
- Marta Medina-O’Donnell
- Departamento
de Química Orgánica, Departamento de Biología
Celular, and Departamento de Bioquímica y Biología Molecular I.
Facultad de Ciencias, Universidad de Granada, E-18071Granada, Spain
| | - Karina Vega-Granados
- Departamento
de Química Orgánica, Departamento de Biología
Celular, and Departamento de Bioquímica y Biología Molecular I.
Facultad de Ciencias, Universidad de Granada, E-18071Granada, Spain
| | - Antonio Martinez
- Departamento
de Química Orgánica, Departamento de Biología
Celular, and Departamento de Bioquímica y Biología Molecular I.
Facultad de Ciencias, Universidad de Granada, E-18071Granada, Spain
| | - M. Rosario Sepúlveda
- Departamento
de Química Orgánica, Departamento de Biología
Celular, and Departamento de Bioquímica y Biología Molecular I.
Facultad de Ciencias, Universidad de Granada, E-18071Granada, Spain
| | | | - Luis Álvarez de Cienfuegos
- Departamento
de Química Orgánica, Departamento de Biología
Celular, and Departamento de Bioquímica y Biología Molecular I.
Facultad de Ciencias, Universidad de Granada, E-18071Granada, Spain
| | - Andres Parra
- Departamento
de Química Orgánica, Departamento de Biología
Celular, and Departamento de Bioquímica y Biología Molecular I.
Facultad de Ciencias, Universidad de Granada, E-18071Granada, Spain
| | - Fernando J. Reyes-Zurita
- Departamento
de Química Orgánica, Departamento de Biología
Celular, and Departamento de Bioquímica y Biología Molecular I.
Facultad de Ciencias, Universidad de Granada, E-18071Granada, Spain
| | - Francisco Rivas
- Departamento
de Química Orgánica, Departamento de Biología
Celular, and Departamento de Bioquímica y Biología Molecular I.
Facultad de Ciencias, Universidad de Granada, E-18071Granada, Spain
| |
Collapse
|
6
|
Kumar A, P N, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid T, K S, Oz F. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023; 28:887. [PMID: 36677944 PMCID: PMC9862941 DOI: 10.3390/molecules28020887] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Recent scientific studies have established a relationship between the consumption of phytochemicals such as carotenoids, polyphenols, isoprenoids, phytosterols, saponins, dietary fibers, polysaccharides, etc., with health benefits such as prevention of diabetes, obesity, cancer, cardiovascular diseases, etc. This has led to the popularization of phytochemicals. Nowadays, foods containing phytochemicals as a constituent (functional foods) and the concentrated form of phytochemicals (nutraceuticals) are used as a preventive measure or cure for many diseases. The health benefits of these phytochemicals depend on their purity and structural stability. The yield, purity, and structural stability of extracted phytochemicals depend on the matrix in which the phytochemical is present, the method of extraction, the solvent used, the temperature, and the time of extraction.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Postharvest Technology, College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Nirmal P
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Anina Jose
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vidisha Tomer
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens Zographou, 157 84 Athens, Greece
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Tahra Elobeid
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Sneha K
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
7
|
He Y, Wang Y, Yang K, Jiao J, Zhan H, Yang Y, Lv D, Li W, Ding W. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases. Molecules 2022; 27:8732. [PMID: 36557864 PMCID: PMC9786823 DOI: 10.3390/molecules27248732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Maslinic acid (MA) is a pentacyclic triterpene acid, which exists in many plants, including olive, and is highly safe for human beings. In recent years, it has been reported that MA has anti-inflammatory, antioxidant, anti-tumor, hypoglycemic, neuroprotective and other biological activities. More and more experimental data has shown that MA has a good therapeutic effect on multiple organ diseases, indicating that it has great clinical application potential. In this paper, the extraction, purification, identification and analysis, biological activity, pharmacokinetics in vivo and molecular mechanism of MA in treating various organ diseases are reviewed. It is hoped to provide a new idea for MA to treat various organ diseases.
Collapse
Affiliation(s)
- Yan He
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Yi Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Jia Jiao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Hong Zhan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Youjun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - De Lv
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihong Li
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
8
|
Arya A, Chahal R, Almutairi MH, Kaushik D, Aleya L, Kamel M, Abdel-Daim MM, Mittal V. Green approach for the recovery of secondary metabolites from the roots of Nardostachys Jatamansi (D. Don) DC using microwave radiations: Process optimization and anti-alzheimer evaluation. FRONTIERS IN PLANT SCIENCE 2022; 13:987986. [PMID: 36388547 PMCID: PMC9664055 DOI: 10.3389/fpls.2022.987986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nardostachys jatamansi (D. Don) DC is a highly valued medicinal herb that has been used in traditional medicinal systems for its remedial effects. Owing to the over-exploitation and unethical trade of N. jatamansi, the accelerating global demand of herbal products from this plant cannot be satisfied by the conventional extraction approach. In view of the progressive demand and incredible biological potential of herb, the present research was designed to optimize various extraction parameters for microwave-assisted extraction (MAE). The extracts obtained from the traditional and green approach were also assessed for the recovery of secondary metabolites and anti-Alzheimer's potential. Various parameters like microwave power, temperature, and time of irradiation were optimized for MAE using Box Behkhen Design (BBD) The scanning electron microscopy of different plant samples was also done to observe the effect of microwave radiations. Further, the metabolite profiling of different extracts was also done by gas chromatography-mass spectrometry (GC-MS) analysis. Also the different behavioral and biochemical parameters along with acetylcholinesterase (AChE) inhibitory potential were assessed to evaluate the anti-Alzheimer's potential. Optimized parameters for MAE were found to be as microwave power 187.04 W, temperature 90°C, and irradiation time 20 min. The extract yield in MAE was significantly enhanced as compared to the conventional method. Also, the total phenolic content and total flavonoid content (TFC) were improved pointedly from 32.13 ± 0.55 to 72.83 ± 1.1 mg of GAE/g of extract and 21.7 ± 0.85 to 39.21 ± 0.7 mg of RUE/g of extract respectively. Later, the GC-MS analysis of various extracts confirmed the enhancement in the concentration of various sesquiterpenes like jatamansone, spirojatamol, valerenal, valeric acid, globulol, nootkatone and steroidal compounds such as sitosterol, ergosterol, stigmastanone, etc. in the optimized extract. A significant improvement in anti-Alzheimer's potential was also observed owing to the better concentration of secondary metabolites in the optimized microwave extract. From the current findings, it could be concluded that the MAE could be a successful and green alternative for the extraction and recovery of secondary metabolites from the selected medicinal herb.
Collapse
Affiliation(s)
- Ashwani Arya
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rubal Chahal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, CEDEX, Besançon, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
9
|
Optimization of Microwave-Assisted Water Extraction to Obtain High Value-Added Compounds from Exhausted Olive Pomace in a Biorefinery Context. Foods 2022; 11:foods11142002. [PMID: 35885246 PMCID: PMC9320046 DOI: 10.3390/foods11142002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Microwave-assisted water extraction (MAWE) was evaluated to obtain the valuable bioactive compounds hydroxytyrosol and mannitol from exhausted olive pomace (EOP). The influence of the operational parameters solid loading (3–15%, w/v), temperature (40–100 °C), and extraction time (4–40 min) was studied using an experimental design. The optimized conditions maximizing their joint extraction were 12% w/v solid loading, 100 °C temperature, and 16 min. It was possible to solubilize 5.87 mg of hydroxytyrosol/g EOP and 46.70 mg mannitol/g EOP. The extracts were also further characterized by liquid chromatography–mass spectrometry, which detected other hydroxytyrosol derivatives such as oleacein, verbascoside, and oleuropein. Moreover, the applied MAWE conditions promoted the co-extraction of proteinaceus material, which was also evaluated. In order to carry out an integral valorization of this waste, the extracted EOP solid was further evaluated chemically and microscopically before recovering the bioactive triterpenes. In particular, maslinic acid and oleanolic acid were obtained, 9.54 mg/g extracted solid and 3.60 mg/g extracted solid, respectively. Overall, MAWE can be applied as a first stage in the fractionation of EOP to support its valorization in a biorefinery framework.
Collapse
|
10
|
Arya A, Kaushik D, Almeer R, Bungau SG, Sayed AA, Abdel-Daim MM, Bhatia S, Mittal V. Application of Green Technologies in Design-Based Extraction of Celastrus paniculatus (Jyotishmati) Seeds, SEM, GC-MS Analysis, and Evaluation for Memory Enhancing Potential. Front Nutr 2022; 9:871183. [PMID: 35662919 PMCID: PMC9158750 DOI: 10.3389/fnut.2022.871183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/23/2022] [Indexed: 01/09/2023] Open
Abstract
Background The Celastrus paniculatus (CP), commonly known as Jyotishmati, is considered as “elixir of life” by Indian people for the prevention or management of many ailments. The seed powder and its extract have widely used commercially for the preparation of various Ayurvedic formulations for the improvement of memory. CP seeds were generally extracted by conventional extraction methods (CEMs) which are assumed to impact environment burden and also produce low extract yield. Green extraction with possible improvement in extract yield has always been the need of hour for selected medicinal plant. Objective In the present research, we aimed to optimize the different extraction factors in microwave and ultrasound-based extraction. The various extracts obtained in conventional and green methods are also evaluated for the possible improvement in memory enhancing potential. Materials and Methods The selected medicinal herb was extracted by CEM (maceration and percolation). In green methods such microwave-assisted extraction (MAE) and ultrasound assisted-extraction (UAE), various parameters were optimized using Box-Behnken design coupled with response surface methodology. The scanning electron microscopy (SEM) and gas chromatography–mass spectroscopy (GC-MS) analyses were also done to confirm the possible improvement in concentration of plant actives. The Swiss albino mice were used to evaluate memory enhancing potential of different extracts. Results At the optimized conditions MAE and UAE the extraction yield, total phenolic content (TPC) and Total flavonoid content (TFC) are significantly improved. The GC-MS analysis further confirms the improvement in concentration of certain fatty acid esters, pilocarpine, and steroidal compounds in optimized extracts. The optimized extracts also exhibited the significant improvement in behavioral parameters, oxidative stress-induced parameters, and acetylcholinesterase inhibitory potential. Discussion and Conclusion From the results, we can say that the application of green technologies in design-based extraction of selected herb not only significantly reduces the extraction time but also improves the extract yield and concentration of plant actives. In nutshell, it can be concluded that the green approaches for extraction of seeds of Celastrus paniculatus could be scale up at a commercial level to meet the rising demand for herbal extract.
Collapse
Affiliation(s)
- Ashwani Arya
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Simona G. Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Mohamed M. Abdel-Daim
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
- *Correspondence: Vineet Mittal
| |
Collapse
|
11
|
Hoenke S, Serbian I, Csuk R. A Malaprade cleavage, a McMurry ring closure and an intramolecular aldol contraction of maslinic acid’s ring A. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Castro-Muñoz R, Díaz-Montes E, Gontarek-Castro E, Boczkaj G, Galanakis CM. A comprehensive review on current and emerging technologies toward the valorization of bio-based wastes and by products from foods. Compr Rev Food Sci Food Saf 2021; 21:46-105. [PMID: 34957673 DOI: 10.1111/1541-4337.12894] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 01/07/2023]
Abstract
Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, San Antonio Buenavista, Toluca de Lerdo, Mexico.,Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Barrio La Laguna Ticoman, Ciudad de México, Mexico
| | - Emilia Gontarek-Castro
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Charis M Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece.,Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
13
|
Progress in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products, and Innovative Technologies Used for Bioactive Compound Extraction. Polymers (Basel) 2021; 13:polym13203503. [PMID: 34685262 PMCID: PMC8539143 DOI: 10.3390/polym13203503] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
According to the Food Wastage Footprint and Climate Change Report, about 15% of all fruits and 25% of all vegetables are wasted at the base of the food production chain. The significant losses and wastes in the fresh and processing industries is becoming a serious environmental issue, mainly due to the microbial degradation impacts. There has been a recent surge in research and innovation related to food, packaging, and pharmaceutical applications to address these problems. The underutilized wastes (seed, skin, rind, and pomace) potentially present good sources of valuable bioactive compounds, including functional nutrients, amylopectin, phytochemicals, vitamins, enzymes, dietary fibers, and oils. Fruit and vegetable wastes (FVW) are rich in nutrients and extra nutritional compounds that contribute to the development of animal feed, bioactive ingredients, and ethanol production. In the development of active packaging films, pectin and other biopolymers are commonly used. In addition, the most recent research studies dealing with FVW have enhanced the physical, mechanical, antioxidant, and antimicrobial properties of packaging and biocomposite systems. Innovative technologies that can be used for sensitive bioactive compound extraction and fortification will be crucial in valorizing FVW completely; thus, this article aims to report the progress made in terms of the valorization of FVW and to emphasize the applications of FVW in active packaging and biocomposites, their by-products, and the innovative technologies (both thermal and non-thermal) that can be used for bioactive compounds extraction.
Collapse
|
14
|
Vega-Granados K, Medina-O’Donnell M, Rivas F, Reyes-Zurita FJ, Martinez A, Alvarez de Cienfuegos L, Lupiañez JA, Parra A. Synthesis and Biological Activity of Triterpene-Coumarin Conjugates. JOURNAL OF NATURAL PRODUCTS 2021; 84:1587-1597. [PMID: 33956447 PMCID: PMC8476055 DOI: 10.1021/acs.jnatprod.1c00128] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A set of 12 maslinic acid-coumarin conjugates was synthesized, with 9 being maslinic acid-diamine-coumarin conjugates at the C-28 carboxylic acid group of triterpene acid and the other three being maslinic acid-coumarin conjugates at C-2/C-3 and/or C-28 of the triterpene skeleton. The cytotoxic effects of these 12 triterpene conjugates were evaluated in three cancer cell lines (B16-F10, HT29, and Hep G2) and compared, respectively, with three nontumor cell lines from the same or similar tissue (HPF, IEC-18, and WRL68). The most potent cytotoxic results were achieved by a conjugate with two molecules of coumarin-3-carboxylic acid coupled through the C-2 and C-3 hydroxy groups of maslinic acid. This conjugate showed submicromolar IC50 values in two of the three cancer cell lines tested (0.6, 1.1, and 0.9 μM), being between 110- and 30-fold more effective than its corresponding precursor. Furthermore, this conjugate (10) showed percentages of cell viability for the three nontumor lines of 90%. Four maslinic acid-coumarin conjugates displayed apoptotic effects in the treated cells, with total apoptosis rates of between 40 and 85%, relative to the control. Almost all the compounds assayed caused cell-cycle arrest in all cancer cell lines, increasing the number of these cells in the G0/G1 phase.
Collapse
Affiliation(s)
- Karina Vega-Granados
- Departamento
de Química Orgánica, Universidad
de Granada, E-18071 Granada, Spain
| | | | - Francisco Rivas
- Departamento
de Química Orgánica, Universidad
de Granada, E-18071 Granada, Spain
- Phone/Fax: +34 958 240479.
| | - Fernando J. Reyes-Zurita
- Departamento
de Bioquímica y Biología Molecular I, Universidad de Granada, E-18071 Granada, Spain
- Phone: +34-958-243252.
| | - Antonio Martinez
- Departamento
de Química Orgánica, Universidad
de Granada, E-18071 Granada, Spain
| | | | - Jose A. Lupiañez
- Departamento
de Bioquímica y Biología Molecular I, Universidad de Granada, E-18071 Granada, Spain
| | - Andres Parra
- Departamento
de Química Orgánica, Universidad
de Granada, E-18071 Granada, Spain
- Phone: +34 958 240480. Fax: +34 958 248437.
| |
Collapse
|
15
|
Influence of extraction methods and solvent system on the chemical composition and antioxidant activity of Centella asiatica L. leaves. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Gullón P, Gullón B, Astray G, Carpena M, Fraga-Corral M, Prieto MA, Simal-Gandara J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res Int 2020; 137:109683. [PMID: 33233259 DOI: 10.1016/j.foodres.2020.109683] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND In the last years, the consumption of olive oil has experienced a sharp rise due to its organoleptic and healthy properties and with this the wastes and by-products derived from the olive production and the olive oil industry have also increased causing important environmental and economic issues. However, the high content in bioactive compounds of these wastes and by-products makes that its recovery is both a great challenge and an excellent opportunity for the olive oil sector. AIM OF THE REVIEW This review encompasses the more outstanding aspects related to the advances achieved until date in the olive oil by-products valorisation and added-value applications for innovative functional foods. CONCLUSION Taking into account the information reported in this manuscript, the development of a multiproduct biorefinery in cascade using eco-friendly technologies interchangable seems a suitable stratety to obtaining high added value compounds from olive oil by-products with applications in the field of innovative functional foods. In addition, this would allow an integral valorization of these residues enhancing the profitability of the olive oil industry. On the other hand, the biocompounds fom olive oil by-products have been described by their interesting bioactivities with beneficial properties for the consumers' health; therefore, their incorporation into the formulation of functional foods opens new possibilities in the field of innovative foods. Future perspective: Despite the studies descibed in the literature, more research on the healthy properties of the recovered compounds and their interactions with food components is key to allow their reintegration in the food chain and therefore, the removal of the olive oil by-products.
Collapse
Affiliation(s)
- Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense, Spain
| | - Gonzalo Astray
- Department of Physical Chemistry, Faculty Science, Faculty of Science, University of Vigo, Ourense Campus, Ourense, Spain
| | - María Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - María Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain.
| |
Collapse
|
17
|
Djemaa-Landri K, Hamri-Zeghichi S, Valls J, Cluzet S, Tristan R, Boulahbal N, Kadri N, Madani K. Phenolic content and antioxidant activities of Vitis vinifera L. leaf extracts obtained by conventional solvent and microwave-assisted extractions. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00596-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Medina-O'Donnell M, Rivas F, Reyes-Zurita FJ, Cano-Muñoz M, Martinez A, Lupiañez JA, Parra A. Oleanolic Acid Derivatives as Potential Inhibitors of HIV-1 Protease. JOURNAL OF NATURAL PRODUCTS 2019; 82:2886-2896. [PMID: 31617361 DOI: 10.1021/acs.jnatprod.9b00649] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pentacyclic triterpenes, such as oleanolic acid (I), are promising scaffolds for diversification through the use of combinatorial methods to obtain derivatives that improve their biological properties, increasing their bioavailability and enhancing their therapeutic efficacy. The purpose of this study was to evaluate the influence that derivatives of oleanolic acid, conjugated with one or two amino acids and an acyl group, might exert on HIV-1 protease inhibition. The in vitro studies conducted suggested that the presence of a carboxyacyl group generally improves the inhibition of HIV-1 protease, especially when a phthaloyl group is present, with IC50 concentration values below 5 μM. The gain in activity of three 3-phthaloyl derivatives, with sub-micromolar IC50 values, was between 60- and 100-fold more active than oleanolic acid. A molecular docking study has also been performed to elucidate the mode of binding to the protease by these oleanolic acid derivatives. In general, the derivatives that exhibited the highest inhibitory activity of HIV-1 protease also showed the highest binding energies in docking simulations. The overall results suggest that the coupling of one or two amino acids and a phthaloyl group to oleanolic acid improves HIV-1 protease inhibition, implying that these triterpene derivatives may be promising antiviral agents against HIV.
Collapse
|
19
|
Chen D, Yuan X, Liang L, Liu K, Ye H, Liu Z, Liu Y, Huang L, He W, Chen Y, Zhang Y, Xue T. Overexpression of acetyl-CoA carboxylase increases fatty acid production in the green alga Chlamydomonas reinhardtii. Biotechnol Lett 2019; 41:1133-1145. [PMID: 31399913 DOI: 10.1007/s10529-019-02715-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Chlamydomonas reinhardtii is a photosynthetic unicellular model algae with multiple biotechnological advantages, and its fatty acids can be used to produce biofuels. Numerous studies suggest that acetyl-coA carboxylase (ACCa) catalyzes the first committed and rate-limiting step of fatty acid biosynthesis, thereby playing a central role in oil accumulation. Here, we cloned and overexpressed ACCa in C. reinhardtii to directly evaluate its effect on fatty acid synthesis. GC-MS analysis found that the unsaturated FAs contents of the CW15-24 and CW15-85 strains were 55.45% and 56.15%, which were significantly enriched compared to the wild type CW15 (48.39%). Under the optimized conditions, the content of lipid by overexpressed the ACCa gene in the mutant CW15-85 (0.46 g/l) was 1.16-fold greater than control through optimization of N and P sources. Altogether, our data clearly demonstrate that ACCa overexpression in C. reinhardtii can directly increase the synthesis of fatty acids.
Collapse
Affiliation(s)
- Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Xue Yuan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Limin Liang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Kui Liu
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Haoying Ye
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Xiamen, 361013, People's Republic of China
| | - Yanfei Liu
- Fujian Fisheries Technical Extension Center, Fuzhou, 350002, People's Republic of China
| | - Luqiang Huang
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Wenjin He
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, People's Republic of China.,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yanding Zhang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, People's Republic of China.
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, People's Republic of China. .,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, People's Republic of China.
| |
Collapse
|
20
|
Huang X, Zhang X, Pei D, Liu J, Gong Y, Aisa HA, Di D. Continuous separation of maslinic and oleanolic acids from olive pulp by high‐speed countercurrent chromatography with elution‐extrusion mode. J Sep Sci 2019; 42:2080-2088. [DOI: 10.1002/jssc.201900112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Xin‐Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources & Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou P. R. China
| | - Xia Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources & Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou P. R. China
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources & Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou P. R. China
| | - Jian‐Fei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources & Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou P. R. China
| | - Yuan Gong
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources & Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou P. R. China
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid ZoneXinjiang Technical Institute of Physics and ChemistryChinese Academy of Sciences Urumqi P. R. China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource UtilizationXinjiang Technical Institute of Physics and ChemistryChinese Academy of Sciences Urumqi P. R. China
| | - Duo‐Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources & Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou P. R. China
| |
Collapse
|
21
|
Lu X, Zhou Y, Zhang J, Ren Y. Determination of multi‐class antibiotic residues in compost by microwave‐enhanced accelerated solvent extraction and ultra performance convergence chromatography with tandem mass spectrometry. J Sep Sci 2019; 42:1281-1288. [DOI: 10.1002/jssc.201801032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Xue‐feng Lu
- Department of AnalysisSchool of PharmacyShenyang Pharmaceutical University Shenyang P. R. China
| | - Yang Zhou
- Department of AnalysisSchool of ChemistryLiaoning University Shenyang P. R. China
| | - Jian Zhang
- Department of PharmaceuticsSchool of PharmacyPeking University Beijing P. R. China
| | - Yu‐peng Ren
- Department of PharmacyLiaoning cancer hospital Shenyang P. R. China
| |
Collapse
|
22
|
Ji X, Feng J, Wang X, Tian Y, Li C, Luo C, Sun M. Diamond nanoparticles coating for in-tube solid-phase microextraction to detect polycyclic aromatic hydrocarbons. J Sep Sci 2018; 41:4480-4487. [DOI: 10.1002/jssc.201800862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| |
Collapse
|
23
|
Xie P, Huang L, Zhang C, Deng Y, Wang X, Cheng J. Enhanced extraction of hydroxytyrosol, maslinic acid and oleanolic acid from olive pomace: Process parameters, kinetics and thermodynamics, and greenness assessment. Food Chem 2018; 276:662-674. [PMID: 30409646 DOI: 10.1016/j.foodchem.2018.10.079] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 01/12/2023]
Abstract
Three techniques of ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and solvent extraction (SE) were used for enhancing the hydroxytyrosol (HT), maslinic acid (MA) and oleanolic acid (OA) extraction from olive pomace, being evaluated and compared through process parameters, kinetics and thermodynamics, plus greenness assessment analysis. Results showed that UAE yielded the maximum compounds due to a strong cavitation effect and the strongest mass and heat transfer efficiency involving the kinetic constants (h, Ce and K) and thermodynamic parameters (△H, △S and △G). Additionally, the optimal extraction conditions were acquired: ethanol concentration of 90%, extraction temperature of 50 °C, extraction time of 5 min, liquid to solid ratio of 30 mL/g, ultrasound intensity of 135.6 W/cm2, and ultrasound frequency of 60 kHz. UAE was confirmed as an effective and greener technique with the lowest E factor, energy consumption and carbon emission during the extraction process of bioactive compounds from olive pomace.
Collapse
Affiliation(s)
- Pujun Xie
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yejun Deng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Xiaojie Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Jiang Cheng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| |
Collapse
|
24
|
Zhang X, Teng G, Zhang J. Deep eutectic solvents aqueous two-phase system based ultrasonically assisted extraction of ursolic acid (UA) from Cynomorium songaricum Rupr. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1494583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xifeng Zhang
- School of Life Science, Northwest Normal University, Lanzhou, Gansu, People’s Republic of China
- The College of Agriculture and Biotechnology (CAB), Hexi University, Zhangye, Gansu, People’s Republic of China
| | - Guixiang Teng
- School of Life Science, Northwest Normal University, Lanzhou, Gansu, People’s Republic of China
| | - Ji Zhang
- School of Life Science, Northwest Normal University, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
25
|
Medina-O’Donnell M, Rivas F, Reyes-Zurita FJ, Martinez A, Lupiañez JA, Parra A. Diamine and PEGylated-diamine conjugates of triterpenic acids as potential anticancer agents. Eur J Med Chem 2018; 148:325-336. [DOI: 10.1016/j.ejmech.2018.02.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/21/2017] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
|
26
|
Li Y, Li S, Lin SJ, Zhang JJ, Zhao CN, Li HB. Microwave-Assisted Extraction of Natural Antioxidants from the Exotic Gordonia axillaris Fruit: Optimization and Identification of Phenolic Compounds. Molecules 2017; 22:E1481. [PMID: 28878178 PMCID: PMC6151393 DOI: 10.3390/molecules22091481] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 08/30/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023] Open
Abstract
Our previous study reported that the fruit of Gordonia axillaris , an edible wild fruit, possessed strong antioxidant activity. In this study, a microwave-assisted extraction (MAE) method was established to extract antioxidants from the fruit of Gordonia axillaris . The influence of five parameters, including ethanol concentration, solvent/material ratio, extraction time, extraction temperature and microwave power, was investigated by single-factor experiments. Three factors, namely ethanol concentration, solvent/material ratio, extraction time, were found to exert a major influence on extraction efficacy, and were further studied by response surface methodology to investigate their interactions. Ethanol concentration of 36.89%, solvent/material ratio of 29.56 mL/g, extraction time of 71.04 min, temperature of 40 °C, and microwave power of 400 W were found to be the optimal condition. The TEAC value was 198.16 ± 5.47 µmol Trolox/g DW under the optimal conditions, which was in conformity to the predicted value (200.28 µmol Trolox/g DW). In addition, the MAE method was compared with two conventional methods (Soxhlet extraction and maceration extraction). Results showed that the antioxidant capacity of the extract obtained by MAE method was stronger than that obtained by maceration (168.67 ± 3.88 µmol Trolox/g DW) or Soxhlet extraction (114.09 ± 2.01 µmol Trolox/g DW). Finally, several phenolic compounds in the extract were identified and quantified by UPLC-MS/MS, which were rutin, gallic acid, protocatechuic acid, epicatechin, epicatechin gallate, 2-hydrocinnamic acid, p -coumaric acid, quercetin, chlorogenic acid and ferulic acid.
Collapse
Affiliation(s)
- Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Sheng-Jun Lin
- Zhongshan Center for Disease Control and Prevention, Zhongshan 528403, China.
| | - Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Medina-O'Donnell M, Rivas F, Reyes-Zurita FJ, Martinez A, Galisteo-González F, Lupiañez JA, Parra A. Synthesis and in vitro antiproliferative evaluation of PEGylated triterpene acids. Fitoterapia 2017; 120:25-40. [PMID: 28552598 DOI: 10.1016/j.fitote.2017.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/24/2022]
Abstract
A set of PEGylated derivatives of oleanolic and maslinic acids has been semi-synthesised, attaching ethylene glycol, diethylene glycol, triethylene glycol or tetraethylene glycol to the C-28 carboxyl group of these natural triterpenes and some derivatives. Another set of PEGylated derivatives has been semi-synthesised by connecting the same four ethylene glycols to the hydroxyl groups of the A ring of these triterpenic acids, through a carbonate linker, by reaction with trichloromethyl chloroformate. The aqueous solubility of some of these PEGylated derivatives has been compared with that of maslinic acid. The cytotoxic effects of 28 triterpenic PEGylated derivatives in three cancer-cell lines (B16-F10, HT29, and Hep G2) have been assayed. The best results have been achieved with the HT29 cell line, and specifically with the oleanolic acid derivatives having ethylene glycol or tetraethylene glycol attached to the C-28 carboxyl group, which are approximately 27-fold more effective than their natural precursor. Eight PEGylated derivatives have been selected to compare the cytotoxicity results in the HT29 cancer-cell line with those of a non-tumour cell line of the same tissue (IEC-18), four of which were less cytotoxic in the non-tumour cell line. These compounds showed apoptotic effects on treated cells, with percentages of total apoptosis between 20% and 53%, relative to control, at 72h and IC50 concentration, and between 29% to 62%, relative to control, for the same time and IC80 concentration. We have also found that with the treatment of these compounds in HT29 cancer cells, cell-cycle arrest occurred in the G0/G1 phase. Finally, we have also studied changes in mitochondrial membrane potential during apoptosis of HT29 cancer cells, and the results suggest an activation of the extrinsic apoptotic pathway for these compounds.
Collapse
Affiliation(s)
- Marta Medina-O'Donnell
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Francisco Rivas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| | - Fernando J Reyes-Zurita
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| | - Antonio Martinez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | | | - Jose A Lupiañez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Andres Parra
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| |
Collapse
|