1
|
Chen MJ, Yang HL, Si YM, Tang Q, Chow CF, Gong CB. Photoresponsive Surface Molecularly Imprinted Polymers for the Detection of Profenofos in Tomato and Mangosteen. Front Chem 2020; 8:583036. [PMID: 33195073 PMCID: PMC7581910 DOI: 10.3389/fchem.2020.583036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
As a moderately toxic organophosphorus pesticide, profenofos (PFF) is widely used in agricultural practice, resulting in the accumulation of a high amount of PFF in agricultural products and the environment. This will inevitably damage our health. Therefore, it is important to establish a convenient and sensitive method for the detection of PFF. This paper reports a photoresponsive surface-imprinted polymer based on poly(styrene-co-methyl acrylic acid) (PS-co-PMAA@PSMIPs) for the detection of PFF by using carboxyl-capped polystyrene microspheres (PS-co-PMAA), PFF, 4-((4-(methacryloyloxy)phenyl)diazenyl) benzoic acid, and triethanolamine trimethacrylate as the substrate, template, functional monomer, and cross-linker, respectively. PS-co-PMAA@PSMIP shows good photoresponsive properties in DMSO/H2O (3:1, v/v). Its photoisomerization rate constant exhibits a good linear relationship with PFF concentration in the range of 0~15 μmol/L. PS-co-PMAA@PSMIP was applied for the determination of PFF in spiked tomato and mangosteen with good recoveries ranging in 94.4-102.4%.
Collapse
Affiliation(s)
- Mei-jun Chen
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Hai-lin Yang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Ya-min Si
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Cheuk-fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Cheng-bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Fan H, Wang J, Meng Q, Jin Z. Monodisperse hollow-shell structured molecularly imprinted polymers for photocontrolled extraction α-cyclodextrin from complex samples. Food Chem 2019; 281:1-7. [DOI: 10.1016/j.foodchem.2018.12.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/09/2018] [Accepted: 12/15/2018] [Indexed: 11/24/2022]
|
3
|
Gong CB, Wei YB, Chen MJ, Liu LT, Chow CF, Tang Q. Double imprinted photoresponsive polymer for simultaneous detection of phthalate esters in plastics. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Zengin A, Badak MU, Aktas N. Selective separation and determination of quercetin from red wine by molecularly imprinted nanoparticles coupled with HPLC and ultraviolet detection. J Sep Sci 2018; 41:3459-3466. [DOI: 10.1002/jssc.201800437] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Adem Zengin
- Department of Chemical Engineering; Faculty of Engineering; Van Yuzuncu Yil University; Van Turkey
| | - M. Utku Badak
- Department of Chemical Engineering; Faculty of Engineering; Van Yuzuncu Yil University; Van Turkey
| | - Nahit Aktas
- Department of Chemical Engineering; Faculty of Engineering; Van Yuzuncu Yil University; Van Turkey
| |
Collapse
|
6
|
Fan H, Wang J, Meng Q, Tian Y, Xu X, Jin Z. Photoirradiation surface molecularly imprinted polymers for the separation of 6-O-α-d-maltosyl-β-cyclodextrin. J Sep Sci 2017; 40:4653-4660. [PMID: 28985024 DOI: 10.1002/jssc.201700808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Abstract
Photoirradiation surface molecularly imprinted polymers for the separation of 6-O-α-d-maltosyl-β-cyclodextrin were synthesized using functionalized silica as a matrix, 4-(phenyldiazenyl)phenol as a light-sensitive monomer, and 6-O-α-d-maltosyl-β-cyclodextrin as a template. Fourier transform infrared spectroscopy results indicated that 4-(phenyldiazenyl)phenol was grafted onto the surface of functionalized silica. The obtained imprinted polymers exhibited specific recognition toward 6-O-α-d-maltosyl-β-cyclodextrin. Equilibrium binding experiments showed that the photoirradiation surface molecularly imprinted polymers obtained the maximum adsorption amount of 6-O-α-d-maltosyl-β-cyclodextrin at 20.5 mg/g. In binding kinetic experiments, the adsorption reached saturation within 2 h with binding capacity of 72.8%. The experimental results showed that the adsorption capacity and selectivity of imprinted polymers were effective for the separation of 6-O-α-d-maltosyl-β-cyclodextrin, indicating that imprinted polymers could be used to isolate 6-O-α-d-maltosyl-β-cyclodextrin from a conversion mixture containing β-cyclodextrin and maltose. The results showed that the imprinted polymers prepared by this method were very promising for the selective separation of 6-O-α-d-maltosyl-β-cyclodextrin.
Collapse
Affiliation(s)
- Haoran Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Qingran Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|