1
|
Todorov SK, Tomasikova F, Hansen M, Shetty R, Jansen CL, Jacobsen C, Hobley TJ, Lametsch R, Bang-Berthelsen CH. Using pre-fermented sugar beet pulp as a growth medium to produce Pleurotus ostreatus mycelium for meat alternatives. Int J Food Microbiol 2024; 425:110872. [PMID: 39163813 DOI: 10.1016/j.ijfoodmicro.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
This study aimed to determine the compatibility of pre-fermented sugar beet pulp to support the growth of Pleurotus ostreatus mycelium in submerged fermentation. The goal was to create a meat alternative based on mycelial-fermented pulp. It was further explored whether pre-fermentation with lactic acid bacteria (LAB) on the pulp increased meat-like properties, such as aroma, springiness, and hardness, in the final product. Three strains were selected from a high throughput screening of 105 plant-derived LAB based on their acidification and metabolite production in the pulp. Two homofermentative strains (Lactococcus lactis) and one heterofermentative strain (Levilactobacillus brevis) were selected based on their low ethanol production, high lactic acid production, and overall acidification of the pulp. Mycelium of P. ostreatus was grown in submerged fermentations on the pre-fermented pulp, and the biomass was removed by centrifugation. The fungal strain consumed all available sugars and acids and released arabinose to the media. Volatiles were detected using GC-MS, and a large increase in concentrations of hexanal, 1-octen-3-ol, and 2-octenal was measured. Concentration of 1-octen-3-ol was lower in the pre-fermented samples vs. the non-pre-fermented. LC-MS amino acid analysis showed the presence of all essential amino acids on day 0 and 7 of fermentation. The highest concentration of amino acids was for glutamic acid/glutamine and aspartic acid/asparagine. A decrease in all amino acids after 7 days of fungal fermentation was measured for all fermentations. The decrease was more significant for pre-fermented samples. This was also confirmed through a total protein determination, except for samples pre-fermented with Lactococcus lactis strain NFICC142 which increased in total protein content after fungal fermentation. The protein digestibility increased after fungal fermentation, and the highest increase was seen for non-pre-fermented samples. The springiness of the fermented product indicated similarities to meat alternatives, while the hardness was much lower than other meat alternatives. The results indicate that dried sugar beet pulp can be used for submerged cultivation of P. ostreatus, but that pre-fermentation does not improve the physical or nutritional properties of the end product significantly, except for an increased protein content for NFICC142 pre-fermented media. This is the first known attempt to use LAB and P. ostreatus in mixed fermentation to produce fungal mycelium, as well as the first attempt at using SBP in a liquid fermentation for mycelial production of P. ostreatus.
Collapse
Affiliation(s)
| | - Frantiska Tomasikova
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Mikkel Hansen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Radhakrishna Shetty
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Celia L Jansen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Timothy John Hobley
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - René Lametsch
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark.
| | | |
Collapse
|
2
|
Ahn S, Bae S. Synthesis and Characterization of a Multi-Walled Carbon Nanotube-Ionic Liquid/Polyaniline Adsorbent for a Solvent-Free In-Needle Microextraction Method. Molecules 2023; 28:molecules28083517. [PMID: 37110753 PMCID: PMC10142705 DOI: 10.3390/molecules28083517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Sample preparation is an essential process when handling complex matrices. Extraction without using a solvent requires the direct transfer of analytes from the sample to the adsorbent either in the gas or liquid phase. In this study, a wire coated with a new adsorbent was fabricated for in-needle microextraction (INME) as a solvent-free sample extraction method. The wire inserted into the needle was placed in the headspace (HS), which was saturated with volatile organic compounds from the sample in a vial. A new adsorbent was synthesized via electrochemical polymerization by mixing aniline with multi-walled carbon nanotubes (MWCNTs) in the presence of an ionic liquid (IL). The newly synthesized adsorbent using IL is expected to achieve high thermal stability, good solvation properties, and high extraction efficiency. The characteristics of the electrochemically synthesized surfaces coated with MWCNT-IL/polyaniline (PANI) adsorbents were characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and atomic force microscopy (AFM). Then, the proposed HS-INME-MWCNT-IL/PANI method was optimized and validated. Accuracy and precision were evaluated by analyzing replicates of a real sample containing phthalates, showing spike recovery between 61.13% and 108.21% and relative standard deviations lower than 15%. The limit of detection and limit of quantification of the proposed method were computed using the IUPAC definition as 15.84~50.56 μg and 52.79~168.5 μg, respectively. We concluded that HS-INME using a wire coated with the MWCNT-IL/PANI adsorbent could be repeatedly used up to 150 times without degrading its extraction performance in an aqueous solution; it constitutes an eco-friendly and cost-effective extraction method.
Collapse
Affiliation(s)
- Soyoung Ahn
- Department of Chemistry, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Sunyoung Bae
- Department of Chemistry, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea
| |
Collapse
|
3
|
Xue R, Li H, Liu S, Hu Z, Wu Q, Ji H. Substitution of soybean meal with Clostridium autoethanogenum protein in grass carp (Ctenopharygodon idella) diets: Effects on growth performance, feed utilization, muscle nutritional value and sensory characteristics. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Characterization of scents from Juniperus chinensis by headspace in-needle microextraction using graphene oxide-polyaniline nanocomposite coated wire followed by gas chromatography-mass spectrometry. Talanta 2022; 245:123463. [DOI: 10.1016/j.talanta.2022.123463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
|
5
|
Kim S, Bae S. In Vitro and In Vivo Human Body Odor Analysis Method Using GO:PANI/ZNRs/ZIF−8 Adsorbent Followed by GC/MS. Molecules 2022; 27:molecules27154795. [PMID: 35956746 PMCID: PMC9369976 DOI: 10.3390/molecules27154795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Among various volatile organic compounds (VOCs) emitted from human skin, trans-2-nonenal, benzothiazole, hexyl salicylate, α-hexyl cinnamaldehyde, and isopropyl palmitate are key indicators associated with the degrees of aging. In our study, extraction and determination methods of human body odor are newly developed using headspace-in needle microextraction (HS-INME). The adsorbent was synthesized with graphene oxide:polyaniline/zinc nanorods/zeolitic imidazolate framework-8 (GO:PANI/ZNRs/ZIF−8). Then, a wire coated with the adsorbent was placed into the adsorption kit to be directly exposed to human skin as in vivo sampling and inserted into the needle so that it was able to be desorbed at the GC injector. The adsorption kit was made in-house with a 3D printer. For the in vitro method, the wire coated with the adsorbent was inserted into the needle and exposed to the headspace of the vial. When a cotton T-shirt containing body odor was transferred to a vial, the headspace of the vial was saturated with body odor VOCs. After volatile organic compounds were adsorbed in the dynamic mode, the needle was transferred to the injector for analysis of the volatile organic compounds by gas chromatography/mass spectrometry (GC/MS). The conditions of adsorbent fabrication and extraction for body odor compounds were optimized by response surface methodology (RSM). In conclusion, it was able to synthesize GO:PANI/ZNRs/ZIF−8 at the optimal condition and applicable to both in vivo and in vitro methods for body odor VOCs analysis.
Collapse
|
6
|
Vejar-Vivar C, Millán-Santiago J, Mardones C, Lucena R, Cárdenas S. Polydopamine inner wall-coated hypodermic needle as microextraction device and electrospray emitter for the direct analysis of illicit drugs in oral fluid by ambient mass spectrometry. Talanta 2022; 249:123693. [PMID: 35751921 DOI: 10.1016/j.talanta.2022.123693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
In this article, polydopamine inner wall-coated hypodermic needles (PDA-HNs) are evaluated as both microextraction devices and electrospray ionization (ESI) emitters for determining selected illicit drugs (methamphetamine, cocaine, and methadone) in oral fluid samples. The PDA film, located in the inner wall of the needle, allows the extraction of the analytes at alkaline pH, where their hydrophobic character is promoted. The extracted analytes are finally eluted in a methanol/formic acid mixture that also acts as ESI solution. For this purpose, a dedicated interface based on the connection of a PEEK tube with the needle hub is proposed. This assembly allows delivering the ESI solution by the infusion syringe pump of the mass spectrometer, providing an efficient ESI on the tip of the needle. The double use of the PDA-HNs as microextraction devices and ESI emitters permits the determination of the target analytes with limits of detection and precision (expressed as relative standard deviation) values better than 2.4 μg/L and 17.6%, respectively. The accuracy was evaluated by analyzing independent spiked oral fluid samples, obtaining good results.
Collapse
Affiliation(s)
- Carmina Vejar-Vivar
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain; Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Casilla 237, Correo 3, Concepción, Chile
| | - Jaime Millán-Santiago
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Casilla 237, Correo 3, Concepción, Chile
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| |
Collapse
|
7
|
Alhendal A, Almoaeen RA, Rashad M, Husain A, Mouffouk F, Ahmad Z. Aramid-wrapped CNT hybrid sol–gel sorbent for polycyclic aromatic hydrocarbons. RSC Adv 2022; 12:18077-18083. [PMID: 35800310 PMCID: PMC9207600 DOI: 10.1039/d2ra02659g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
This work describes the preparation of an analytical microextraction sorbent using a simple and versatile sol–gel hybrid composite, i.e., aramid oligomers wrapping multi-walled carbon nanotubes (CNTs) covalently bonded to a porous silica network.
Collapse
Affiliation(s)
- Abdullah Alhendal
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Randa Abd Almoaeen
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Mohamed Rashad
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Ali Husain
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Fouzi Mouffouk
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| | - Zahoor Ahmad
- Department of Chemistry, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait
| |
Collapse
|
8
|
Vitorino R, Guedes S, da Costa JP, Kašička V. Microfluidics for Peptidomics, Proteomics, and Cell Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1118. [PMID: 33925983 PMCID: PMC8145566 DOI: 10.3390/nano11051118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Microfluidics is the advanced microtechnology of fluid manipulation in channels with at least one dimension in the range of 1-100 microns. Microfluidic technology offers a growing number of tools for manipulating small volumes of fluid to control chemical, biological, and physical processes relevant to separation, analysis, and detection. Currently, microfluidic devices play an important role in many biological, chemical, physical, biotechnological and engineering applications. There are numerous ways to fabricate the necessary microchannels and integrate them into microfluidic platforms. In peptidomics and proteomics, microfluidics is often used in combination with mass spectrometric (MS) analysis. This review provides an overview of using microfluidic systems for peptidomics, proteomics and cell analysis. The application of microfluidics in combination with MS detection and other novel techniques to answer clinical questions is also discussed in the context of disease diagnosis and therapy. Recent developments and applications of capillary and microchip (electro)separation methods in proteomic and peptidomic analysis are summarized. The state of the art of microchip platforms for cell sorting and single-cell analysis is also discussed. Advances in detection methods are reported, and new applications in proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices and determination of their physicochemical parameters are highlighted.
Collapse
Affiliation(s)
- Rui Vitorino
- UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4785-999 Porto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, 00351234 Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - João Pinto da Costa
- Department of Chemistry & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 00351234 Aveiro, Portugal;
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemigovo n. 542/2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
9
|
Guo J, Liu Y, Yang Y, Li Y, Wang R, Ju H. A Filter Supported Surface-Enhanced Raman Scattering "Nose" for Point-of-Care Monitoring of Gaseous Metabolites of Bacteria. Anal Chem 2020; 92:5055-5063. [PMID: 32129599 DOI: 10.1021/acs.analchem.9b05400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work designs a convenient method for fabrication of surface-enhanced Raman scattering (SERS) devices by loading gold nanostars (AuNSs) on a flat filter support with vacuum filtration. The dense accumulation of AuNSs results in a strong sensitization to SERS signal and shows sensitive response to gaseous metabolites of bacteria, which produces a SERS "nose" for rapid point-of-care monitoring of these metabolites. The "nose" shows good reproducibility and stability and can be used for SERS quantitation of a gaseous target with Raman signal. The impressive performance of the proposed SERS "nose" for detecting gaseous metabolites of common foodborne bacteria like Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa from inoculated samples demonstrates its much higher sensitivity than that of human sense and application in distinguishing spoiled food at an early stage and real-time tracing of food spoilage degree. The strong point-of-care testing ability of the designed SERS "nose" and the miniaturization of whole equipment extend greatly the analytical application of SERS technology in food safety and public health.
Collapse
Affiliation(s)
- Jingxing Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yumei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Ruiyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
10
|
Kędziora-Koch K, Wasiak W. Needle-based extraction techniques with protected sorbent as powerful sample preparation tools to gas chromatographic analysis: Trends in application. J Chromatogr A 2018; 1565:1-18. [DOI: 10.1016/j.chroma.2018.06.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/12/2018] [Accepted: 06/18/2018] [Indexed: 12/31/2022]
|
11
|
In-needle Microextraction Coupled with Gas Chromatography/Mass Spectrometry for the Analysis of Phthalates Generating from Food Containers. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1254-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|