1
|
Liu Y, Lin YX, Rong XH, Li MM, Pan J, Guan W, Kuang HX, Yang BY. Three new triterpenoids from the fruit of Eleutherococcus senticosus (Rupr.) Harms. Nat Prod Res 2024:1-9. [PMID: 38804234 DOI: 10.1080/14786419.2024.2352141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
A phytochemical investigation on the 70% EtOH extract of the fruit of Acanthpanax senticosus resulted in the isolation of three new triterpenoids, Falcatane C (1), Acasentrioid F (2), Acasentrioid G (3) together with twenty-seven known ones (4-30). Structural elucidation of all the compounds was performed by spectral methods such as 1D or 2D (1H-1H COSY, HSQC, and HMBC), NMR spectroscopy, and high-resolution mass spectrometry. Moreover, all compounds were evaluated for their effects on H2O2-induced neurotoxicity in human neuroblastoma SH-SY5Ycells. Compounds 13 and 15 showed significant neuroprotective impact at a specific concentration, and compounds 1, 3, 5, 9, 11, 13-15, 17, 20-21, 23-25, 27, 29-30 showed moderate neuroprotective effect. The current study suggests that triterpenes in Eleutherococcus senticosus (Rupr.) Harms may play an essential role in the neuroprotective properties.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Yu-Xuan Lin
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Xiao-Hui Rong
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Meng-Meng Li
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao, (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| |
Collapse
|
2
|
Wang M, Yin F, Kong L, Yang L, Sun H, Sun Y, Yan G, Han Y, Wang X. Chinmedomics: a potent tool for the evaluation of traditional Chinese medicine efficacy and identification of its active components. Chin Med 2024; 19:47. [PMID: 38481256 PMCID: PMC10935806 DOI: 10.1186/s13020-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
As an important part of medical science, Traditional Chinese Medicine (TCM) attracts much public attention due to its multi-target and multi-pathway characteristics in treating diseases. However, the limitations of traditional research methods pose a dilemma for the evaluation of clinical efficacy, the discovery of active ingredients and the elucidation of the mechanism of action. Therefore, innovative approaches that are in line with the characteristics of TCM theory and clinical practice are urgently needed. Chinmendomics, a newly emerging strategy for evaluating the efficacy of TCM, is proposed. This strategy combines systems biology, serum pharmacochemistry of TCM and bioinformatics to evaluate the efficacy of TCM with a holistic view by accurately identifying syndrome biomarkers and monitoring their complex metabolic processes intervened by TCM, and finding the agents associated with the metabolic course of pharmacodynamic biomarkers by constructing a bioinformatics-based correlation network model to further reveal the interaction between agents and pharmacodynamic targets. In this article, we review the recent progress of Chinmedomics to promote its application in the modernisation and internationalisation of TCM.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
3
|
Chang Y, Jiang Y, Chen J, Li S, Wang Y, Chai L, Ma J, Wang Z. Comprehensive analysis of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. fruits based on UPLC-MS/MS and GC-MS: A rapid qualitative analysis. Food Sci Nutr 2024; 12:1911-1927. [PMID: 38455163 PMCID: PMC10916571 DOI: 10.1002/fsn3.3887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 03/09/2024] Open
Abstract
Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. fruits (ESF), as a natural edible fruit, has long been popularized. However, few studies have conducted comprehensive chemical analyses of it. This study aimed to assess nonvolatile, volatile, and fatty oil components of ESF and to preliminarily explore the antioxidant activities. The qualitative and quantitative analyses of volatile and fatty oil components of ESF from 15 different regions were performed by the gas chromatography-mass spectrometry (GC-MS). Totally, 37 and 28 compounds were identified from volatile oil and fatty oil, respectively. The ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) was used to accurately detect 43 compounds of nonvolatile components. The volatile and fatty oil components and nonvolatile components of ESF were used as samples to determine the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro. The components of ESF had antioxidant activity, and the nonvolatile components had stronger antioxidant activity. The results revealed that the proposed method, which is of great significance for the screening of new active ingredients, is valuable for the identification of pharmaceutical component and further development of food industry.
Collapse
Affiliation(s)
- Yaodan Chang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of EducationHeilongjiang University of Chinese MedicineHarbinChina
| | - Yong Jiang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of EducationHeilongjiang University of Chinese MedicineHarbinChina
| | - Jingnan Chen
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of EducationHeilongjiang University of Chinese MedicineHarbinChina
| | - Sen Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of EducationHeilongjiang University of Chinese MedicineHarbinChina
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of EducationHeilongjiang University of Chinese MedicineHarbinChina
| | - Linlin Chai
- Department of Rheumatism, The First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Jingwen Ma
- Department of Acupuncture, The Second Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of EducationHeilongjiang University of Chinese MedicineHarbinChina
| |
Collapse
|
4
|
Zhuo Y, Fu X, Jiang Q, Lai Y, Gu Y, Fang S, Chen H, Liu C, Pan H, Wu Q, Fang J. Systems pharmacology-based mechanism exploration of Acanthopanax senticosusin for Alzheimer's disease using UPLC-Q-TOF-MS, network analysis, and experimental validation. Eur J Pharmacol 2023:175895. [PMID: 37422122 DOI: 10.1016/j.ejphar.2023.175895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease, characterized by progressive cognitive dysfunction and memory loss. However, the disease-modifying treatments for AD are still lacking. Traditional Chinese herbs, have shown their potentials as novel treatments for complex diseases, such as AD. PURPOSE This study was aimed at investigating the mechanism of action (MOA) of Acanthopanax senticosusin (AS) for treatment of AD. METHODS In this study, we firstly identified the chemical constituents in Acanthopanax senticosusin (AS) utilizing ultra-high performance liquid chromatography coupled with Q-TOF-mass spectrometry (UPLC-Q-TOF-MS), and next built the drug-target network of these compounds. We next performed the systems pharmacology-based analysis to preliminary explore the MOA of AS against AD. Moreover, we applied the network proximity approach to identify the potential anti-AD components in AS. Finally, experimental validations, including animal behavior test, ELISA and TUNEL staining, were conducted to verify our systems pharmacology-based analysis. RESULTS 60 chemical constituents in AS were identified via the UPLC-Q-TOF-MS approach. The systems pharmacology-based analysis indicated that AS might exert its therapeutic effects on AD via acetylcholinesterase and apoptosis signaling pathway. To explore the material basis of AS against AD, we further identified 15 potential anti-AD components in AS. Consistently, in vivo experiments demonstrated that AS could protect cholinergic nervous system damage and decrease neuronal apoptosis caused by scopolamine. CONCLUSION Overall, this study applied systems pharmacology approach, via UPLC-Q-TOF-MS, network analysis, and experimental validation to decipher the potential molecular mechanism of AS against AD.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yiyi Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huiling Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chenchen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
5
|
Zhou Y, Ren YS, Li XT, Cai MT, Li HL, Ding WL, Wu YH, Guo HB, Tang ZH, Sun F, Chen AL, Piao XH, Wang SM, Ge YW. MS/MS molecular networking-guided in-depth profiling of triterpenoid saponins from the fruit of Eleutherococcus senticosus and their neuroprotectivity evaluation. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:209-224. [PMID: 36529143 DOI: 10.1002/pca.3198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Eleutherococcus senticosus fruit (ESF) is a natural health supplement resource that has been extensively applied as a tonic for the nervous system. The structures and neural bioactivities of triterpenoid saponins (TS), which are the major constituents of ESF, have not been comprehensively analyzed thus far. OBJECTIVE We conducted a complete in-depth MS/MS molecular networking (MN)-based targeted analysis of TS from the crude extract of ESF and investigated its neuroprotective value. METHODS An MS/MS MN-guided strategy was used to rapidly present a series of precursor ions (PIs) of TS in a compound cluster as TS-targeted information used in the discovery and characterization of TS. In addition, a prepared TS-rich fraction of ESF was assayed for its restraining effects on β-amyloid-induced inhibition of neurite outgrowth. RESULTS A total of 87 TS were discovered using a PI tracking strategy, 28 of which were characterized as potentially undescribed structures according to their high-resolution MS values. Furthermore, the TS-rich fraction can significantly reduce β-amyloid-induced damage to neural networks by promoting the outgrowth of neurites and axons. CONCLUSION Our findings reveal the richness of TS in ESF and will accelerate their application in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying-Shan Ren
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xi-Tao Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Meng-Ting Cai
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wen-Luan Ding
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Hang Wu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hai-Biao Guo
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou, China
| | - Zhong-Hua Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education Northeast Forestry University, Harbin, China
| | - Fei Sun
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - A-Li Chen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shu-Mei Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Wan C, Wang X, Liu H, Zhang Q, Yan G, Li Z, Fang H, Sun H. Characterization of effective constituents in Acanthopanax senticosus fruit for blood deficiency syndrome based on the chinmedomics strategy. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Abstract
The fruit of Acanthopanax senticosus (Rupr. and Maxim.) has been newly developed for the treatment of blood deficiency syndrome clinically, but the effective constituents are still unclear, restricting its quality control and the new medicinal development based on it. This study elucidated the efficacy of A. senticosus fruit (ASF) for treating blood deficiency syndrome and accurately characterize the constituents. Chinmedomics strategy was used to identify the metabolic biomarkers of the model and the overall effect of ASF was evaluated based on the biomarker when it showed intervention effects for blood deficiency syndrome. ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the components in the blood absorbed from A. senticosus fruit, and the components highly relevant to the biomarker are regarded as potential effective constituents for blood deficiency syndrome. Twenty-two of the 28 urine metabolites of blood deficiency syndrome were significantly regulated by A. senticosus fruit, 97 compounds included 20 prototype components, and 77 metabolites were found in vivo under the acting condition. The highly relevant constituents were isofraxidin, eleutheroside B, eleutheroside B1, eleutheroside E, and caffeic acid, which might be the effective constituents of A. senticosus fruit. It is a promising new medicinal resource that can be used for treating blood deficiency syndrome.
Collapse
Affiliation(s)
- Chunlei Wan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Avenida Wai Long , Taipa , Macau
| | - Hongda Liu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Qingyu Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Zhineng Li
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Heng Fang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| |
Collapse
|
7
|
Enzyme-Assisted Ultrasonic Extraction of Total Flavonoids from Acanthopanax senticosus and Their Enrichment and Antioxidant Properties. Processes (Basel) 2021. [DOI: 10.3390/pr9101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are one of the important active ingredients from Acanthopanax senticosus, with a variety of biological functions, such as antioxidant and antibacterial properties. The aim of this work was to investigate enzyme-assisted ultrasonic extraction of A. senticosus flavonoids and their enrichment and antioxidant properties. We found that the optimal extraction process after Box–Behnken response surface optimization had the following parameters: a 3:2 ratio of cellulase to pectinase, enzyme mixture amount of 6960 U g−1, enzyme treatment time of 59.80 min; temperature of 53.70 °C, and pH value of 6.05. The yield of total flavonoids reached 36.95 ± 0.05 mg g−1. The results for different polar solvent enrichments showed that the highest flavonoid (61.0 ± 0.344 mg g−1), polyphenol (24.93 ± 0.234 mg g−1), and saponin (17.80 ± 0.586 mg g−1) contents were observed in the 1-butanol fraction, and the highest polysaccharide content (20.04 ± 0.783 mg g−1) was in the water fraction. Pearson correlation analysis revealed that the antioxidant potential of the extract was related to the higher amount of flavonoids and phenolics in the extract. We thus found an effective A. senticosus flavonoid extraction and enrichment procedure, which can serve as a reference method.
Collapse
|
8
|
Cao X, Zhang Z, Liu G, Zhang Z, Yin J. Preparation of Magnetic Dummy Template Molecularly Imprinted Polymers for the Determination of Aminoglycosides Antibiotics in Milk. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02042-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Oh E, Kim Y, Park SY, Lim Y, Shin JY, Kim JY, Kim JH, Rhee MY, Kwon O. The fruit of Acanthopanax senticosus Harms improves arterial stiffness and blood pressure: a randomized, placebo-controlled trial. Nutr Res Pract 2020; 14:322-333. [PMID: 32765813 PMCID: PMC7390742 DOI: 10.4162/nrp.2020.14.4.322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/13/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/OBJECTIVES Arterial stiffness and endothelial dysfunction are 2 of the independent predictors for cardiovascular disease, while Acanthopanax senticosus Harms (ASH) is a traditional medicinal plant that can improve cardiovascular health. This study aimed to investigate the efficacy of the fruit of ASH on vascular function in apparently healthy subjects. SUBJECTS/METHODS A 12-week, randomized, double-blind, placebo-controlled design, consisting of healthy adults with at least 2 of the following 3 conditions: borderline high blood pressure (BP; 120 mmHg ≤ systolic BP ≤ 160 mmHg or 80 mmHg ≤ diastolic BP ≤ 100 mmHg), smoking (≥10 cigarettes/day), and borderline blood lipid levels (220 ≤ total cholesterol ≤ 240, 130 ≤ low density lipoprotein cholesterol ≤ 165, or 150 ≤ triglyceride ≤ 220 mg/dL). Randomly assigned 76 subjects who received a placebo or 2 doses of ASH fruit (low, 500 mg/day; high, 1,000 mg/day) completed the intervention. Brachial-ankle pulse wave velocity (baPWV), flow-mediated dilation, carotid intima-media thickness, and BP were measured both at baseline and following the 12-week intervention. Endothelial nitric oxide synthase (eNOS) phosphorylation was assessed by western blotting. RESULTS Compared with the placebo group, the low-dose group showed more significant changes after the 12-week intervention period in terms of systolic BP (0.1 vs. −7.7 mmHg; P = 0.044), baPWV (31.3 vs. −98.7 cm/s; P = 0.007), and the ratio of phospho-eNOS/eNOS (0.8 vs. 1.22; P = 0.037). CONCLUSIONS These results suggest that ASH fruit extract at 500 mg/day has the potential to improve BP and arterial stiffness via endothelial eNOS activation in healthy adults with smoking and the tendency of having elevated BP or blood lipid parameters. Trial Registration Clinical Research Information Service Identifier: KCT0001072
Collapse
Affiliation(s)
- Eunkyoung Oh
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Youjin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Soo-Yeon Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Ji-Yoon Shin
- Ewha Graduate School of Converging Clinical & Public Health, Seoul 03760, Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Ji-Hyun Kim
- Cardiovascular Center, Dongguk University Ilsan Hospital, Goyang 10326, Korea
| | - Moo-Yong Rhee
- Cardiovascular Center, Dongguk University Ilsan Hospital, Goyang 10326, Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
10
|
Zhang AH, Wang YM, Liu Q, Fu WH. A rapid and efficient approach based on ultra-high liquid chromatography coupled with mass spectrometry for identification in vitro and in vivo constituents from shizao decoction. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_329_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Wang Y, Liu Q, Fan S, Yang X, Ming L, Wang H, Liu J. Rapid analysis and characterization of multiple constituents of corn silk aqueous extract using ultra‐high‐performance liquid chromatography combined with quadrupole time‐of‐flight mass spectrometry. J Sep Sci 2019; 42:3054-3066. [PMID: 31328392 DOI: 10.1002/jssc.201900407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Yumei Wang
- Qiqihar Medical University Qiqihar Heilongjiang P. R. China
- Qiqihar Academy of Medical Sciences Qiqihar Heilongjiang P. R. China
| | - Qi Liu
- Qiqihar Medical University Qiqihar Heilongjiang P. R. China
- Qiqihar Academy of Medical Sciences Qiqihar Heilongjiang P. R. China
| | - Songjie Fan
- Qiqihar Medical University Qiqihar Heilongjiang P. R. China
- Qiqihar Academy of Medical Sciences Qiqihar Heilongjiang P. R. China
| | - Xueting Yang
- The Third Affiliated Hospital of Qiqihar Medical University Qiqihar Heilongjiang P. R. China
| | - Linlin Ming
- The Third Affiliated Hospital of Qiqihar Medical University Qiqihar Heilongjiang P. R. China
| | - Huimin Wang
- Qiqihar Medical University Qiqihar Heilongjiang P. R. China
| | - Jianhua Liu
- Qiqihar Medical University Qiqihar Heilongjiang P. R. China
- Qiqihar Academy of Medical Sciences Qiqihar Heilongjiang P. R. China
| |
Collapse
|
12
|
Wang XJ, Ren JL, Zhang AH, Sun H, Yan GL, Han Y, Liu L. Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients: Current evidence. MASS SPECTROMETRY REVIEWS 2019; 38:380-402. [PMID: 30817039 DOI: 10.1002/mas.21589] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Current evidence shows that herbal medicines could be beneficial for the treatment of various diseases. However, the complexities present in chemical compositions of herbal medicines are currently an obstacle for the progression of herbal medicines, which involve unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, non-specific features for drug metabolism, etc. To overcome those issues, metabolomics can be a great to improve and understand herbal medicines from the small-molecule metabolism level. Metabolomics could solve scientific difficulties with herbal medicines from a metabolic perspective, and promote drug discovery and development. In recent years, mass spectrometry-based metabolomics was widely applied for the analysis of herbal constituents in vivo and in vitro. In this review, we highlight the value of mass spectrometry-based metabolomics and metabolism to address the complexity of herbal medicines in systems pharmacology, and to enhance their biomedical value in biomedicine, to shed light on the aid that mass spectrometry-based metabolomics can offer to the investigation of its active ingredients, especially, to link phytochemical analysis with the assessment of pharmacological effect and therapeutic potential. © 2019 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China
| | - Jun-Ling Ren
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
13
|
A Comparative Metabolomics Analysis Reveals the Tissue-Specific Phenolic Profiling in Two Acanthopanax Species. Molecules 2018; 23:molecules23082078. [PMID: 30127238 PMCID: PMC6222473 DOI: 10.3390/molecules23082078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/25/2023] Open
Abstract
Acanthopanax senticosus (Rupr. Maxim.) Harms (ASH) and Acanthopanax sessiliflorus (Rupr. Maxim.) Seem (ASS), are members of the Araliaceae family, and both are used in Asian countries. These herbals have drawn much attention in recent years due to their strong biological activity, with innocuity and little side effects. However, the common and distinct mode of compound profiles between ASH and ASS is still unclear. In this study, a high performance liquid chromatograph-mass spectrometry (HPLC-MS) method was developed to simultaneously quantify the seven major active compounds, including protocatechuate, eleutheroside B, eleutheroside E, isofraxidin, hyperoside, kaempferol and oleanolic acid. Then the targeted metabolomics were conducted to identify 19 phenolic compounds, with tight relation to the above mentioned active compounds, including nine C6C3C6-type, six C6C3-type and four C6C1-type in the two Acanthopanax species studied here. The results showed that the seven active compounds presented a similar trend of changes in different tissues, with more abundant accumulation in roots and stems for both plants. From the view of plant species, the ASH plants possess higher abundance of compounds, especially in the tissues of roots and stems. For phenolics, the 19 phenols detected here could be clearly grouped into five main clusters based on their tissue-specific accumulation patterns. Roots are the tissue for the most abundance of their accumulations. C6C3C6-type compounds are the most widely existing type in both plants. In conclusion, the tissue- and species-specificity in accumulation of seven active compounds and phenolics were revealed in two Acanthopanax species.
Collapse
|
14
|
Han Y, Zhang AH, Zhang YZ, Sun H, Meng XC, Wang XJ. Chemical metabolomics for investigating the protective effectiveness of Acanthopanax senticosus Harms leaf against acute promyelocytic leukemia. RSC Adv 2018; 8:11983-11990. [PMID: 35539371 PMCID: PMC9079283 DOI: 10.1039/c8ra01029c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/10/2018] [Indexed: 12/24/2022] Open
Abstract
Recent advances in the study of high-throughput metabolomics combined with high-resolution mass spectrometry have accelerated our understanding of the efficacy, mechanisms, and application of natural products. In this study, we have used chemical metabolomics to investigate and discover small molecule metabolites for the potential mechanism of Acanthopanax senticosus Harms leaf (ASL) against acute promyelocytic leukemia (APL). Based on high-throughput metabolomics, the underlying biomarker was found by combining chromatography coupled with quadrupole time-of-flight mass spectrometry with multivariate data analysis. The protective effect of ASL was dissected using biochemical indicators, pathology sections, immunohistochemistry, and multivariate analysis. Furthermore, 13 potential biomarkers associated with the pathway of sugar metabolism, amino-acid metabolism, nucleotide metabolism, and the metabolism of arachidonic acid were identified from serum samples. This study would help to understand chemical metabolomics for investigating the anti-APL effectiveness of ASL.
Collapse
Affiliation(s)
- Yue Han
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China
| | - Ying-Zhi Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China
| | - Xiang-Cai Meng
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology Avenida Wai Long, Taipa Macau China
| |
Collapse
|
15
|
Li X, Sun H, Zhang A, Liu Z, Zou D, Song Y, Liu L, Wang X. High-throughput LC-MS method for the rapid characterization of multiple chemical constituents and metabolites of Da-Bu-Yin-Wan. J Sep Sci 2017; 40:4102-4112. [DOI: 10.1002/jssc.201700568] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/12/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Xianna Li
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
| | - Aihua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
| | - Zhidong Liu
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
| | - Di Zou
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
| | - Yanhua Song
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine; Macau University of Science and Technology; Taipa Macau
| | - Xijun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National Traditional Chinese Medicine Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of Traditional Chinese Medicine, Laboratory of Metabolomics, Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; Harbin China
- State Key Laboratory of Quality Research in Chinese Medicine; Macau University of Science and Technology; Taipa Macau
| |
Collapse
|
16
|
Recent developments and emerging trends of mass spectrometry for herbal ingredients analysis. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Zhang K, Yan G, Zhang A, Sun H, Wang X. Recent advances in pharmacokinetics approach for herbal medicine. RSC Adv 2017. [DOI: 10.1039/c7ra02369c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traditional Chinese Medicine (TCM), an indispensable part of herbal medicine, has been used for treating many diseases and/or symptoms for thousands of years.
Collapse
Affiliation(s)
- Kunming Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| | - Guangli Yan
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| | - Aihua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| | - Xijun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| |
Collapse
|