1
|
Polyoxometalate/reduced graphene oxide composite stabilized on the inner wall of a stainless steel tube as a sorbent for solid-phase microextraction of some parabens followed by quantification via high-performance liquid chromatography. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
2
|
Microextraction by packed sorbent of polycyclic aromatic hydrocarbons in brewed coffee samples with a new zwitterionic ionic liquid-modified silica sorbent. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Sun M, Bu Y, Xin X, Feng J. Polyurethane functionalized silica aerogel for in-tube solid-phase microextraction of estrogens prior to high performance liquid chromatography detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Souza ID, Oliveira IGC, Queiroz MEC. Innovative extraction materials for fiber-in-tube solid phase microextraction: A review. Anal Chim Acta 2021; 1165:238110. [PMID: 33975700 DOI: 10.1016/j.aca.2020.11.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 11/18/2022]
Abstract
Fiber-in-tube solid-phase microextraction (fiber-in-tube SPME) with short capillary longitudinally packed with fine fibers as extraction device allows direct coupling to high performance liquid chromatography (HPLC) systems to determine weakly volatile or thermally labile compounds. This technique associates the advantages of miniaturized and analytical on-line systems. Major achievements include the use of different capillaries (fused-silica, copper, stainless steel, polyetheretherketone (PEEK), or poly(tetrafluoroethylene) (PTFE)) that are packed with neat fibers (Zylon®, silk, or Kevlar 29®) or fibers (stainless steel, basalt, or carbon) functionalized with selective coatings (aerogels, ionic liquids (ILs), polymeric ionic liquids (PILs), molecularly imprinted polymers (MIPs), layered double hydroxides (LDHs), or conducting polymer). This review outlines the fundamental theory and the innovative extraction materials for fiber-in-tube SPME-HPLC systems and highlights their main applications in environmental and bioanalyses.
Collapse
Affiliation(s)
- Israel D Souza
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Igor G C Oliveira
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Eugênia C Queiroz
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
6
|
Ionic liquids in the microextraction techniques: The influence of ILs structure and properties. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115994] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Tian Y, Feng X, Zhang Y, Yu Q, Wang X, Tian M. Determination of Volatile Water Pollutants Using Cross-Linked Polymeric Ionic Liquid as Solid Phase Micro-Extraction Coatings. Polymers (Basel) 2020; 12:polym12020292. [PMID: 32024255 PMCID: PMC7077427 DOI: 10.3390/polym12020292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 11/25/2022] Open
Abstract
Ionic liquids found a wide application in catalysis and extraction due to their unique properties. Herein, ethylene glycol dimethacrylate as the cross-linker and 1-vinyl-3- butylimidazolium tetrafluoroborate as functional monomer via thermally initiated free-radical polymerization was prepared as a novel copolymer solid phase micro-extraction (SPME) coating. A surface modified stainless-steel wire was implemented as the substrate. Factors affecting the extraction performances of the copolymer, including the molar ratio of monomers to cross-linkers, the amount of porogen agent, and polymerization time were evaluated and optimized. To evaluate the extraction performance, five commonly seen polycyclic aromatic hydrocarbons (PAHs) were taken as the analytical targets. The potential factors affecting extraction efficiency were optimized. The as-prepared SPME device, coupled with gas chromatography, was successfully applied for the determination of PAHs in water samples. The wide linear range, low detection limit, good reproducibility, selectivity, and excellent thermal stability indicate the promising application of the newly developed SPME fiber in environmental monitoring as well as in other samples having complex matrices.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China;
| | - Xilan Feng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (X.F.); (Y.Z.); (M.T.)
| | - Yuping Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (X.F.); (Y.Z.); (M.T.)
| | - Quan Yu
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China;
- Correspondence: (Q.Y.); (X.W.); Tel.: +86-755-2603-5201 (Q.Y.); +86-755-2603-6618 (X.W.)
| | - Xiaohao Wang
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China;
- Correspondence: (Q.Y.); (X.W.); Tel.: +86-755-2603-5201 (Q.Y.); +86-755-2603-6618 (X.W.)
| | - Mengkui Tian
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (X.F.); (Y.Z.); (M.T.)
| |
Collapse
|
8
|
Li C, Sun M, Ji X, Han S, Feng J, Guo W, Feng J. Triazine‐based organic polymers@SiO
2
nanospheres for sensitive solid‐phase microextraction of polycyclic aromatic hydrocarbons. J Sep Sci 2019; 43:622-630. [DOI: 10.1002/jssc.201900941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Wenjuan Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| |
Collapse
|
9
|
Feng J, Wang X, Han S, Ji X, Li C, Luo C, Sun M. An ionic-liquid-modified melamine-formaldehyde aerogel for in-tube solid-phase microextraction of estrogens followed by high performance liquid chromatography with diode array detection. Mikrochim Acta 2019; 186:769. [DOI: 10.1007/s00604-019-3909-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/11/2019] [Indexed: 12/01/2022]
|
10
|
|
11
|
Marcinkowska R, Konieczna K, Marcinkowski Ł, Namieśnik J, Kloskowski A. Application of ionic liquids in microextraction techniques: Current trends and future perspectives. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Li C, Feng J, Wang X, Tian Y, Ji X, Luo C, Sun M. Melamine–Formaldehyde Aerogel Doped with Boron Nitride Nanosheets as the Coating of In-Tube Solid-Phase Microextraction. Chromatographia 2019. [DOI: 10.1007/s10337-019-03707-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Mei M, Huang X, Chen L. Recent development and applications of poly (ionic liquid)s in microextraction techniques. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Costa Queiroz ME, Donizeti de Souza I, Marchioni C. Current advances and applications of in-tube solid-phase microextraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Feng J, Wang X, Tian Y, Luo C, Sun M. Melamine–formaldehyde aerogel coating for in-tube solid-phase microextraction. J Chromatogr A 2018; 1577:8-14. [DOI: 10.1016/j.chroma.2018.09.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/22/2018] [Accepted: 09/23/2018] [Indexed: 11/30/2022]
|