Zdovc B, Grdadolnik M, Pahovnik D, Žagar E. Determination of End-Group Functionality of Propylene Oxide-Based Polyether Polyols Recovered from Polyurethane Foams by Chemical Recycling.
Macromolecules 2023;
56:3374-3382. [PMID:
37181246 PMCID:
PMC10173687 DOI:
10.1021/acs.macromol.3c00087]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Chemical recycling of polyurethane foams (PUFs) leads to partially aromatic, amino-functionalized polyol chains when the urethane groups in the PUF structure are incompletely degraded. Since the reactivity of amino and hydroxyl groups with isocyanate groups is significantly different, information on the type of the end-group functionality of recycled polyols is important to adjust the catalyst system accordingly to produce PUFs from recycled polyols of suitable quality. Therefore, we present here a liquid adsorption chromatography (LAC) method using a SHARC 1 column that separates polyol chains according to their end-group functionality based on their ability to form hydrogen bonds with the stationary phase. To correlate end-group functionality of recycled polyol with chain size, LAC was coupled with size-exclusion chromatography (SEC) to form a two-dimensional liquid chromatography system. For accurate identification of peaks in LAC chromatograms, the results were correlated with those obtained by characterization of recycled polyols using nuclear magnetic resonance, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and SEC coupled with a multi-detection system. The developed method allows the quantification of fully hydroxyl-functionalized chains in recycled polyols using an evaporative light scattering detector and appropriate calibration curve.
Collapse