1
|
Berg CJ, Alderete JP, Alderete EA. Human wastewater tracking in tropical Hawaiian island streams using qualitative and quantitative assessments of combined fecal indicating bacteria and sucralose, an organic micropollutant of emerging concern. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:966. [PMID: 37464185 PMCID: PMC10354164 DOI: 10.1007/s10661-023-11545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
Prevalence of cesspools on tropical islands suggests that high concentrations of enteric bacteria in streams and coastal waters are an indicator of groundwater contamination by human wastewater. But enterococci bacteria may also be from homeothermic animals common to these watersheds or bacteria living in sediments. Sucralose, a manufactured chemical not destroyed in passage through the human gut, cesspools, septic systems, or wastewater treatment facilities, was used to test for the presence of human wastewater in streams on the island of Kauai, Hawaii. Effluent from six municipal wastewater treatment plants showed an average concentration of 39,167 ng/L of sucralose, roughly back-calculated to 9 ng/L per person, enough to present itself in cesspool effluent contaminated waters. Of 24 streams tested, 79% were positive for sucralose at least once in four sets of sampling. All streams tested positive for enterococci bacteria above established standards. Serial testing of the pair of indicators in the same location over time and applying the Multiplication Rule to the independent samples provide a probabilistic certainty level that the water is chronically polluted by human waste. When repeatedly paired with tests for enterococci, sucralose testing is a cost-effective means for assessing human health risk and for developing proper waste management programs that has been underutilized in under-developed tropical and island settings.
Collapse
Affiliation(s)
- Carl J. Berg
- Kauai Chapter of Surfrider Foundation, P.O. Box 2195, Kapa’a, Hawaii 96746 USA
| | - John P. Alderete
- Kauai Chapter of Surfrider Foundation, P.O. Box 2195, Kapa’a, Hawaii 96746 USA
| | - Ethan A. Alderete
- Kauai Chapter of Surfrider Foundation, P.O. Box 2195, Kapa’a, Hawaii 96746 USA
| |
Collapse
|
2
|
Chen L, Zhang Y, Zhou Y, Shi D, Feng XS. Sweeteners in food samples: An update on pretreatment and analysis techniques since 2015. Food Chem 2023; 408:135248. [PMID: 36571882 DOI: 10.1016/j.foodchem.2022.135248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
Sweeteners play an irreplaceable role in daily life and have been found in multitudinous food products. However, excessive or unreasonable intake of sweeteners as food additives brings about untoward problems due to the accumulation in the human body. Therefore, a comprehensive review of different sweeteners' pretreatment and determination methods is urgently needed. In this review, we comprehensively reviewed the progress of different pretreatment and detection methods for sweeteners in various food, focusing on the latest development since 2015. Current state-of-the-art technologies, such as headspace single-drop microextraction, ultrasound-assisted emulsification microextraction, solid-phase microextraction, two-dimensional liquid chromatography, and high-resolution mass spectrometry, are thoroughly discussed. The advantages, disadvantages, critical comments, and future perspectives are also proposed. This review is expected to provide rewarding insights into the future development and broad application of pretreatment and detection methods for sweeteners in different food samples.
Collapse
Affiliation(s)
- Lan Chen
- School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Zhai Y, Bao Y, Ning T, Chen P, Di S, Zhu S. Room temperature fabrication of magnetic covalent organic frameworks for efficient enrichment of parabens in water. J Chromatogr A 2023; 1692:463850. [PMID: 36773400 DOI: 10.1016/j.chroma.2023.463850] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
A novel 4 + 2 covalent magnetic organic framework (COF) with core-shell structure was synthesized for the first time with N, N, N', N'-Tetrakis (4-aminophenyl)-1, 4- benzenediamine (TPDA) and 2, 6-Pyridinedicarboxaldehyde (PCBA) at room temperature. The synthesized magnetic TPDA-PCBA-COF has a large specific surface area and superparamagnetism, which makes it an ideal sorbent for trace analytes enrichment. To this end, we combined it with magnetic solid phase extraction (MSPE) to enrich trace parabens in environmental water. The parameters affecting the enrichment efficiency of magnetic solid phase extraction, such as the amount of Fe3O4@TPDA-PCBA-COF, extraction time, pH of samples, salt concentration, desorption solvent volume and desorption time, were optimized. A simple method for extraction and determination of parabens in water samples by MSPE combined with high performance liquid chromatography (HPLC) was established under optimized conditions. The validation results revealed that the linear ranges were at 1.0-5.0 × 102 ng mL-1 with R value between 0.9915 and 0.9999, the spiked recoveries were in the range of 82.8% to 99.9% and RSDs were lower than 10%. The method was further applied to the determination of parabens in water samples, with recoveries in the range of 82.2% to 110.0% and RSDs ≤ 7.7%. These results suggest that the magnetic TPDA-PCBA-COF could be used as a promising adsorbent for efficient extraction and quantitation of parabens in environmental water samples.
Collapse
Affiliation(s)
- Yixin Zhai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yue Bao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
4
|
Zhang M, Wang W, Lv Z, Wang S. Effects of particle size on the adsorption behavior and antifouling performance of magnetic resins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11926-11935. [PMID: 36097309 DOI: 10.1007/s11356-022-22961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Adequately choosing the physicochemical characteristics of adsorbent is crucial in improving its adsorption performance. This work investigated the effect of particle size of magnetic resins on adsorption behaviors of tetracycline (TC) and their antifouling performance. Smaller particle size resin Q150 (10-30 μm) shows notably faster TC adsorption kinetics when compared resins with hundreds of microns (Q100 and Q1). Simulated by Weber-Morris equation, the film diffusion time of Q150 was only 20 min, 2-25 times faster than that of other resins. At this adsorption time, Q150 can reach more than 80% of the maximum adsorption, and the ring-like fluorescence images indicate that the molecules are accumulated on the external surface. Q150 also shows better reusability and antifouling performance over Q100 and Q1. After 20 adsorption-desorption cycles, the adsorption capacity of Q150 at 20 min only decreases 9.7%. The presence of tannic acid also only slightly decreases the adsorption capacity. The faster adsorption kinetics and the superior antifouling performance of Q150 make it a promising adsorbent in future use.
Collapse
Affiliation(s)
- Mancheng Zhang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, People's Republic of China.
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Nanjing, 210036, People's Republic of China.
| | - Wei Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, People's Republic of China
| | - Zongxiang Lv
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, People's Republic of China
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Nanjing, 210036, People's Republic of China
| | - Shui Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, People's Republic of China
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Nanjing, 210036, People's Republic of China
| |
Collapse
|
5
|
Younes M, Aquilina G, Castle L, Degen G, Engel K, Fowler PJ, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wright M, Batke M, Boon P, Bruzell E, Chipman J, Crebelli R, FitzGerald R, Fortes C, Halldorsson T, LeBlanc J, Lindtner O, Mortensen A, Ntzani E, Wallace H, Cascio C, Civitella C, Horvath Z, Lodi F, Mech A, Tard A, Vianello G. Re-evaluation of neohesperidine dihydrochalcone (E 959) as a food additive. EFSA J 2022; 20:e07595. [PMID: 36406883 PMCID: PMC9669802 DOI: 10.2903/j.efsa.2022.7595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The present opinion deals with the re-evaluation of neohesperidine dihydrochalcone (E 959) when used as a food additive. It is obtained by catalytic hydrogenation of a flavanone - neohesperidine - which is naturally occurring and thus isolated by alcohol extraction in bitter oranges (Citrus aurantium). Based on in vivo data in rat, neohesperidine dihydrochalcone is likely to be absorbed, also in humans, and to become systemically available. It does not raise a concern regarding genotoxicity. The toxicity data set consisted of studies on subchronic and prenatal developmental toxicity. No human studies were available. The data set was considered sufficient to derive a new acceptable daily intake (ADI). Based on the weight of evidence (WoE) analysis, the Panel considered unlikely that neohesperidine dihydrochalcone would lead to adverse effects on health in animals in the dose ranges tested. The Panel also considered that a carcinogenicity study was not warranted and that the lack of human data did not affect the overall confidence in the body of evidence. The Panel derived an ADI of 20 mg/kg bodyweight (bw) per day based on a no observed adverse effect level (NOAEL) of 4,000 mg/kg bw per day from a 13-week study in rat, applying the standard default factors of 100 for inter- and intraspecies differences and of 2 for extrapolation from subchronic to chronic exposure. For the refined brand-loyal exposure assessment scenario, considered to be the most appropriate for the risk assessment, the exposure estimates at the mean ranged from < 0.01 to 0.09 mg/kg bw per day and at the 95th percentile (P95) from 0.01 to 0.24 mg/kg bw per day. Considering the derived ADI of 20 mg/kg bw per day, the exposure estimates were below the reference value in all age groups. Therefore, the Panel concluded that dietary exposure to the food additive neohesperidine dihydrochalcone (E 959) at the reported uses and use levels would not raise a safety concern.
Collapse
|
6
|
Li Y, Ma Z, Guo H, Xu X, Zhang F. Facile synthesis of a novel magnetic covalent organic frameworks for extraction and determination of five fungicides in Chinese herbal medicines. J Sep Sci 2022; 45:2344-2355. [PMID: 35475317 DOI: 10.1002/jssc.202200191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022]
Abstract
A novel magnetic covalent organic framework was synthesized via one step coating approach with solvothermal reaction employing 2,4,6-tris(4-aminophen-yl)-1,3,5-triazine and 2,4,6-triformylphloroglucinol as two building blocks by covalent bonding. The prepared magnetic covalent organic frameworks were properly characterized by different techniques and employed as adsorbent of magnetic solid phase extraction. An analytical method was developed for simultaneous determination of five fungicides in two Chinese herbal medicine samples via magnetic solid phase extraction coupled to UHPLC-MS/MS analysis. Under optimized magnetic solid phase extraction conditions, the method exhibited satisfactory recoveries (74.0-109.6%) with the relative standard deviations of 0.4-4.6%, low limits of detection (0.003-0.015 μg kg-1 ), and good linearity (R2 > 0.9960). Compared with the traditional extraction method, the proposed method required a lower amount of adsorbent (3 mg) and extraction time (5 min). The adsorbent also had favourable reusability (not less than 8 times). Therefore, the magnetic covalent organic frameworks could be a promising adsorbent for the extraction and quantitation of pesticide residues in Chinese herbal medicines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yurui Li
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China.,Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.,Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Zhenning Ma
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Hongbo Guo
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.,Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.,Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| |
Collapse
|
7
|
Zhou L, Yu J. Use of hydroxypropyl β-cyclodextrin hybrid monolithic material as adsorbent for dispersive solid-phase extraction of fluoroquinolones from environmental water samples. J Sep Sci 2022; 45:2310-2320. [PMID: 35447012 DOI: 10.1002/jssc.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
In this study, the hydroxypropyl β-cyclodextrin hybrid monolithic material was fabricated and firstly applied as adsorbent for dispersive solid-phase extraction coupled with high-performance liquid chromatography to detect trace-level seven fluoroquinolones in water samples. The prepared hydroxypropyl β-cyclodextrin hybrid monolithic material was characterized by fourier transform infrared spectroscopy, scanning electron microscopy and adsorption experiments, which showed excellent specific adsorption to the target fluoroquinolones. Under the optimized conditions, the extraction methodology showed satisfactory precision with relative standard deviations between 2.6 and 5.6%, good linearity (R2 ≥0.9990) and satisfactory recoveries (82.5∼91.8%). The limits of detection and limits of quantification of the method were in the range of 0.4∼1.2 ng mL-1 and 1.4∼4.0 ng mL-1 respectively, which confirmed the possibility of quantifying trace levels. Furthermore, the material could be reused at least five times. These results demonstrated that the hydroxypropyl β-cyclodextrin hybrid monolithic material was a promising adsorbent for fluoroquinolones, and the established method combined dispersive solid-phase extraction with high-performance liquid chromatography was suitable for the determination of fluoroquinolones in aqueous samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Li Zhou
- Department of Health Inspection, College of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Shenyang, Liaoning Province, 110034, China.,School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, China
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, China
| |
Collapse
|
8
|
Nadal JC, Catalá-Icardo M, Borrull F, Herrero-Martínez JM, Marcé RM, Fontanals N. Weak anion-exchange mixed-mode materials to selectively extract acidic compounds by stir bar sorptive extraction from environmental waters. J Chromatogr A 2021; 1663:462748. [PMID: 34965484 DOI: 10.1016/j.chroma.2021.462748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
In this study, the first example of a polytetrafluoroethylene (PTFE)-based magnet coated with weak anion exchange (WAX) monolith as novel support for stir bar sorptive extraction (SBSE) is presented. Firstly, the PTFE magnets were properly modified and vinylized in order to immobilize polymer monoliths onto its surface. Then, a glycidyl methacrylate monolith was prepared and modified with ethylenediamine (EDA) to create weak anion exchanger via ring opening reaction of epoxy groups. The prepared covalently immobilized EDA-modified monoliths onto PTFE magnet exhibited good stability and reusability. Application of resulting material as stir bar for SBSE was investigated for a series of acidic compounds that includes acesulfame, saccharin, diclofenac or ibuprofen, among others as target compounds. Firstly, the SBSE conditions were optimized to promote the WAX interactions with the target compounds achieving recoveries from 37 to 75% and enable the selective extraction of these compounds as it provided values of% matrix effect from 17 to -13% when they were determined by SBSE followed by liquid chromatography - tandem mass spectrometry. The analytical methodology, was then validated and applied for the determination of the target solutes in environmental water samples, which were found at concentration up to 2500 ng L-1 in river waters.
Collapse
Affiliation(s)
- Joan Carles Nadal
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Mónica Catalá-Icardo
- Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Campus de Gandia, Universitat Politècnica de València, C/ Paranimf 1, Grao de Gandia, Valencia 46730, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | | | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, Tarragona 43007, Spain.
| | - Núria Fontanals
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, Tarragona 43007, Spain
| |
Collapse
|
9
|
Nadal JC, Dargo S, Borrull F, Cormack PAG, Fontanals N, Marcé RM. Hypercrosslinked polymer microspheres decorated with anion- and cation-exchange groups for the simultaneous solid-phase extraction of acidic and basic analytes from environmental waters. J Chromatogr A 2021; 1661:462715. [PMID: 34871939 DOI: 10.1016/j.chroma.2021.462715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
Mixed-mode ion-exchange sorbents were introduced to improve the selectivity and retention of solid-phase extraction (SPE) sorbents. Mixed-mode ion-exchange sorbents integrate reversed-phase chemistry with ion-exchange groups to promote favourable interactions with ionic species. Nevertheless, a need to extract analytes with acidic and basic properties simultaneously within the same SPE cartridge led to the introduction of novel amphoteric/zwitterionic sorbents, which incorporate cation- and anion-exchange moieties within the same functional group attached to the polymeric network. In the present study, the development, preparation and SPE evaluation of two novel hypercrosslinked zwitterionic polymeric sorbents, functionalised with either strong anion-exchange (SAX) and weak cation-exchange (WCX) or weak anion-exchange (WAX) and strong cation-exchange (SCX) groups (namely HXLPP-SAX/WCX and the HXLPP-WAX/SCX), is presented for the simultaneous retention of acidic and basic compounds. The sorbents were prepared by a precipitation polymerisation route which yielded poly(divinylbenzene-co-vinylbenzylchloride) as a precursor polymer; subsequently, the precursor polymer was hypercrosslinked, to increase the specific surface areas and capacities of the sorbents, and then functionalised to impart the zwitterionic character. The HXLPP-SAX/WCX sorbent was decorated with quaternised sarcosine groups and the HXLPP-WAX/SCX sorbent was decorated with taurine moieties. The SPE parameters were optimised to exploit the ionic interactions between compounds and the functional groups. The optimal conditions involve a washing step to remove the compounds retained by hydrophobic interactions, thus increasing the selectivity. The optimised SPE protocol used the quaternised sarcosine-based sorbent followed by liquid chromatography and tandem mass spectrometry, and was applied to determine compounds with acidic and basic properties from environmental samples, such as river water and effluent wastewater samples, with excellent selectivity and matrix effect values below -30% and apparent recovery results ranging from 52% to 105% for most of the compounds. The analytical method was validated for environmental water samples and used in the analysis of samples in which some of the target compounds were found at ng L-1 concentration levels.
Collapse
Affiliation(s)
- Joan Carles Nadal
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Stuart Dargo
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, United Kingdom
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Peter A G Cormack
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, United Kingdom.
| | - Núria Fontanals
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
10
|
Omidi F, Khadem M, Dehghani F, Seyedsomeah M, Shahtaheri SJ. Ultrasound-assisted dispersive micro-solid-phase extraction based on N-doped mesoporous carbon and high-performance liquid chromatographic determination of 1-hydroxypyrene in urine samples. J Sep Sci 2020; 43:2602-2609. [PMID: 32223065 DOI: 10.1002/jssc.202000172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
In this research, a new ultrasound-assisted dispersive micro-solid-phase extraction method based on N-doped mesoporous carbon sorbent followed by high-performance liquid chromatography equipped with diode array detector for trace measurement of 1-hydroxypyrene as a metabolite of exposure to polycyclic aromatic hydrocarbons was optimized. Herein, the hard template method was used for the preparation of N-doped mesoporous carbon sorbent. The prepared sorbent was characterized using the Brunauer-Emmett-Teller method, transmission electron microscopy, and elemental analysis. Parameters affecting the extraction of the target metabolite were investigated using the Box-Behnken design method. Considering optimum parameters, the plotted calibration curve for 1-hydroxypyrene was linearly correlated with the concentration span of 0.1-50 μg/L for urine media. The accuracy of the optimized procedure was examined through the relative recovery tests on the fortified urine specimens. The relative recoveries fell between 95 and 101%. The method detection limit of the proposed procedure was also calculated to be 0.03 μg/L.
Collapse
Affiliation(s)
- Fariborz Omidi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Monireh Khadem
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dehghani
- Department of Occupational Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mirghani Seyedsomeah
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jamaleddin Shahtaheri
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|