1
|
Dang J, Ma J, Dawa Y, Liu C, Ji T, Wang Q. Preparative separation of 1,1-diphenyl-2-picrylhydrazyl inhibitors originating from Saxifraga sinomontana employing medium-pressure liquid chromatography in combination with reversed-phase liquid chromatography. RSC Adv 2021; 11:38739-38749. [PMID: 35493204 PMCID: PMC9044138 DOI: 10.1039/d1ra05819c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Traditional Tibetan medicines elaborately document the health benefits of Saxifraga sinomontana. However, there have been limited reports on its chemical make-up, presumably because of the complicated separation and purification process. In this work, a methanolic extract of Saxifraga sinomontana was utilized for targeted separation of 4 key 1,1-diphenyl-2-picrylhydrazyl inhibitors employing the medium-pressure liquid chromatography, reversed-phase liquid chromatography in combination with on-line reversed-phase liquid chromatography-1,1-diphenyl-2-picrylhydrazyl detection. Pre-treatment of the sample was carried out by employing medium-pressure liquid chromatography using MCI GEL® CHP20P as the stationary phase, furnishing 2.4 g of fraction Fr3 and 3.4 g of fraction Fr4 (the percentage retrieval was 32.7%). The 1,1-diphenyl-2-picrylhydrazyl inhibitors contained in fractions Fr3 and Fr4 were subjected to additional separation using a C18 (ReproSil-Pur C18 AQ) column and yielded 106.2 mg of Fr3-1, 246.9 mg of Fr3-2, 248.5 mg of Fr4-1 and 41.8 mg of Fr4-2. The degree of purity, structures and 1,1-diphenyl-2-picrylhydrazyl inhibition activity of the isolated DPPH inhibitors were determined, and four 1,1-diphenyl-2-picrylhydrazyl inhibitors including two new diarylnonanoids (3-methoxy-4-hydroxyphenol-(6'-O-galloyl)-1-O-β-d-glucopyrano side with IC50 of 39.6 μM, 3,4,5-trimethoxyphenyl-(6'-O-galloyl)-1-O-β-d-glucopyranoside with IC50 of 46.9 μM, saximonsin A with IC50 of 11.4 μM, and saximonsin B with IC50 of 20.6 μM) were isolated with a percentage purity above 95%. The methodology thus evolved has good efficacy for preparatively isolating high-purity 1,1-diphenyl-2-picrylhydrazyl inhibitors from extracts of Saxifraga sinomontana and could be efficiently utilized for rapidly isolating 1,1-diphenyl-2-picrylhydrazyl inhibitors from other natural products.
Collapse
Affiliation(s)
- Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining Qinghai China
| | - Jianbin Ma
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University Xining 810008 China
| | - Yangzom Dawa
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University Xining 810008 China
| | - Chuang Liu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining Qinghai China
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Qilan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining Qinghai China
| |
Collapse
|
2
|
Dang J, Ma J, Du Y, Dawa Y, Wang Q, Chen C, Wang Q, Tao Y, Ji T. Large-scale preparative isolation of bergenin standard substance from Saxifraga atrata using polyamide coupled with MCI GEL® CHP20P as stationary phases in medium pressure chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1170:122617. [PMID: 33713947 DOI: 10.1016/j.jchromb.2021.122617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/09/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
In this study, polyamide and MCI GEL® CHP20P were employed as stationary phases in medium pressure chromatography (MPC) for the efficient preparative separation of bergenin from Saxifraga atrata. Ethanol-water, methanol-water, and acetonitrile-water mobile phases all showed good enrichment capacity for bergenin fraction when polyamide was used as a stationary phase. After 5 cycles of polyamide MPC using acetonitrile/water, 1.2 g of bergenin fraction was isolated from 180 g Saxifraga atrata herb. Further purification of this fraction was conducted using MCI GEL® CHP20P styrene-divinylbenzene beads. The bergenin fraction was separated into two fractions, and after three runs of MPC, 714.2 mg of bergenin with purity above 99% was obtained. The results demonstrate that the combination of polyamide and styrene-divinylbenzene MPC can be utilized for preparative isolation of compounds from natural products with high yield and purity.
Collapse
Affiliation(s)
- Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
| | - Jianbin Ma
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, Qinghai, China
| | - Yurong Du
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, Qinghai, China
| | - YangZom Dawa
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, Qinghai, China
| | - Qi Wang
- College of Pharmacy, Qinghai Nationalities University, Xining 810007, Qinghai, China
| | - Chengbiao Chen
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, Qinghai, China
| | - Qilan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
| | - Yanduo Tao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China.
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Guo Y, Chen Y, Zheng J, Huang W, Zhang L, Zhang H, Yan J. Isolation and purification of polar compounds from Eupatorium fortunei Turcz by high-speed counter-current chromatography. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2020.1867165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yuru Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yi Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Wei Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Lu Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Lu Y, Sun G. Hydroxypropyl-β-cyclodextrin encapsulated stationary phase based on silica monolith particles for enantioseparation in liquid chromatography. J Sep Sci 2020; 44:735-743. [PMID: 33253443 DOI: 10.1002/jssc.202000978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 01/13/2023]
Abstract
Hydroxypropyl-β-cyclodextrin-encapsulated stationary phase incorporated on silica monolith particles was prepared by physical embedding, providing a new method for the development of chiral stationary phase for enantioseparation in liquid chromatography. Ground silica monolith particles of about 2.0 μm were prepared via sol-gel reaction followed by differential sedimentation. Initially, the silica monolith particles were pretreated with 3-trimethoxysilyl propyl methacrylate to attach double-bonded ligands onto the surface, then a network structure was formed onto the surface of the particle using N-isopropyl acrylamide as functional monomer. Hydroxypropyl-β-cyclodextrin was encapsulated inside N-isopropyl acrylamide copolymerized layer on the surface of silica monolith particles. The effect of the amount of chiral selector on the chromatographic efficiency of the chiral stationary phase was examined. The glass lined stainless steel columns (1 mm internal diameter, 300 mm length) were packed with the stationary phase for estimation of the efficiency by separation of phenylsuccinic acid, oxybutynin, equol, and naproxen enantiomers in high-performance liquid chromatography, with the resolutions of 1.54, 1.72, 2.54, and 2.31, respectively. The column to column repeatabilities through relative standard deviation were found better than 3%. The experimental results indicate that the sol-gel ground silica particles modified with β-cyclodextrin provide a promising way for the separation of chiral enantiomers.
Collapse
Affiliation(s)
- Yao Lu
- Department of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| | - Genlin Sun
- Department of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| |
Collapse
|
5
|
Dawa Y, Du Y, Wang Q, Chen C, Zou D, Qi D, Ma J, Dang J. Targeted isolation of 1,1-diphenyl-2-picrylhydrazyl inhibitors from Saxifraga atrata using medium- and high- pressure liquid chromatography combined with online high performance liquid chromatography-1,1-diphenyl-2- picrylhydrazyl detection. J Chromatogr A 2020; 1635:461690. [PMID: 33250159 DOI: 10.1016/j.chroma.2020.461690] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 01/17/2023]
Abstract
Traditional Tibetan medicine (TTM) is a valuable source of novel therapeutic lead molecules inspired by natural products (NPs). The health benefits of Saxifraga atrata are well documented in TTM, but reports on its chemical composition are limited, most likely due to the complicated purification process. Herein, target separation and identification of 4 main radical scavenging compounds from the methanolic extract of S. atrata was were performed using medium- and high-pressure liquid chromatography coupled with online HPLC-DPPH detection. The sample was pretreated using medium pressure liquid chromatography with MCI GELⓇ CHP20P styrene-divinylbenzene beads as a stationary phase, yielding 1.4 g of the target DPPH inhibitors (Fr4, 11.9% recovery). The compounds were further purified and isolated using HPLC on RP-C18 (ReproSil-Pur C18 AQ) followed by HILIC (Click XIon) column separation, resulting in 2.8 mg of fraction Fr4-1-1, 6.8 mg of fraction Fr4-2, 244.9 mg of the Fr4-3-1 sample, and 38.3 mg of Fr4-4-1. The structure and purity of the target compounds were determined, and four compounds (ethyl gallate, 11-O-galloylbergenin, rutin and isoquercitrin) were isolated with >95% purity. The developed methodology is efficient for targeted isolation of high-purity radical scavengers from NP extracts and could be used for rapid identification and isolation of DPPH inhibitors from various NPs.
Collapse
Affiliation(s)
- Yangzom Dawa
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Yurong Du
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Qi Wang
- College of Pharmacy, Qinghai Nationalities University, Xining, Qinghai, China
| | - Chengbiao Chen
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Denglang Zou
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Desheng Qi
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Jianbin Ma
- Qinghai Provincial Key Laboratory of Tibet Plateau Biodiversity Formation Mechanism and Comprehensive Utilization, College of Life Sciences, Qinghai Normal University, Xining 810008, China.
| | - Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
| |
Collapse
|
6
|
Guo Y, Tong S, Zhang K, Yan J. Recent progress in separation prediction of counter-current chromatography. J Sep Sci 2020; 44:6-16. [PMID: 32926765 DOI: 10.1002/jssc.202000473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/11/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022]
Abstract
As a liquid-liquid partition chromatography, counter-current chromatography has advantages in large sample loading capacity without irreversible adsorption, which has been widely applied in separation and purification fields. The main factors, including partition coefficient, two-phase solvent systems, apparatus, and operating parameters greatly affect the separation process of counter-current chromatography. To promote the applications of counter-current chromatography, it is essential to develop theoretical research to master the principles of counter-current chromatographic separations so as to achieve predictions before laborious trials. In this article, recent progress about separation prediction methods are reviewed from a point of the steady and unsteady state of the mass transfer process of counter-current chromatography and its mass transfer characteristics, and then it is divided into three aspects: prediction of partition coefficient, modeling the thermodynamic process of counter-current chromatography, and modeling the dynamic process of counter-current chromatography.
Collapse
Affiliation(s)
- Yuru Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Keqing Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
7
|
Strategy for the separation of strongly polar antioxidant compounds from Lycium barbarum L. via high-speed counter-current chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122268. [PMID: 32739789 DOI: 10.1016/j.jchromb.2020.122268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/29/2020] [Accepted: 07/12/2020] [Indexed: 12/27/2022]
Abstract
In the separation of strongly polar antioxidant compounds from natural products using high-speed counter-current chromatography that is target-guided by 2,2-diphenyl-1-picrylhydrazyl high-performance liquid chromatography experimentation, low adsorption ability is encountered due to the strong polarity of the target compounds. In this study, a strategy of novel partition coefficient value calculation was proposed for overcoming this problem. The partition coefficient value was expressed as the ratio of the antioxidant activities of the upper phase and the lower phase. This strategy was used in high-speed counter-current chromatography with a hydrophilic organic/salt-containing aqueous two-phase system for bioassay-guided separation of strongly polar antioxidant compounds from Lycium barbarum L. The antioxidant activity was determined via the radical scavenging activity method using 2,2-diphenyl-1-picrylhydrazyl radicals. A hydrophilic organic/salt-containing aqueous two-phase system of 95% EtOH - sat. (NH4)2SO4 (1:1.8, v/v) was successfully used to separate Lycium barbarum L. extract. Five fractions were collected via high-speed counter-current chromatography separation. The antioxidant activity of the third fraction was the highest. Three compounds were separated via MCI gel column chromatography and Sephadex LH-20 column chromatography from the third fraction, and their antioxidant activities were determined. The antioxidant activities of the three compounds were higher than that of the third fraction. These results demonstrate that this strategy can be used to separate strongly polar antioxidant compounds from natural products.
Collapse
|
8
|
Zhang Y, Wu F, Jia A, He T, Qu M, Xiao C, Cole J, Wang W, Qiu Z. Adsorption and desorption characteristics of ginsenosides from
Panax ginseng C. A. Meyer
on middle‐pressure chromatogram isolated gels. J Sep Sci 2020; 43:2436-2446. [DOI: 10.1002/jssc.201901050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Yan‐Fei Zhang
- School of Pharmaceutical sciencesChangchun University of Chinese Medicine Changchun Jilin 130117 P. R. China
| | - Fa‐Jie Wu
- School of Pharmaceutical sciencesChangchun University of Chinese Medicine Changchun Jilin 130117 P. R. China
| | - Ai‐Ling Jia
- School of Pharmaceutical sciencesChangchun University of Chinese Medicine Changchun Jilin 130117 P. R. China
| | - Tian‐Zhu He
- School of Basic Medical sciencesChangchun University of Chinese Medicine Changchun Jilin 130117 P. R. China
| | - Mo Qu
- School of Pharmaceutical sciencesChangchun University of Chinese Medicine Changchun Jilin 130117 P. R. China
| | - Chun‐Ping Xiao
- School of Pharmaceutical sciencesChangchun University of Chinese Medicine Changchun Jilin 130117 P. R. China
| | - Janét Cole
- Department of PharmaceuticsCenter for Pharmaceutical Engineering and Sciences, School of PharmacyVirginia Commonwealth University Richmond Virginia 23298 USA
| | - Wei‐Nan Wang
- School of Pharmaceutical sciencesChangchun University of Chinese Medicine Changchun Jilin 130117 P. R. China
| | - Zhi‐Dong Qiu
- School of Pharmaceutical sciencesChangchun University of Chinese Medicine Changchun Jilin 130117 P. R. China
| |
Collapse
|