1
|
Mandal S, Poi R, Hazra DK, Ansary I, Bhattacharyya S, Karmakar R. Review of extraction and detection techniques for the analysis of pesticide residues in fruits to evaluate food safety and make legislative decisions: Challenges and anticipations. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123587. [PMID: 36628882 DOI: 10.1016/j.jchromb.2022.123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Fruits are vital parts of the human diet because they include necessary nutrients that the body needs. Pesticide use has increased dramatically in recent years to combat fruit pests across the world. Pesticide usage during production, on the other hand, frequently results in undesirable residues in fruits after harvest. Consumers are concerned about pesticide residues since most of the fruits are directly consumed and even recommended for the patients as dietary supplements. As a result of this worry, pesticide residues in fruits are being randomly monitored to re-assess the food safety situation and make informed legislative decisions. To assess the degree of pesticide residues in fruits, a simple and quick analytical procedure is usually required. As a result, pesticide residue detection (using various analytical techniques: GC, LC and Biosensors) becomes critical, and regulatory directives are formed to regulate their amounts via the Maximum Residue Limit (MRL). Over the previous two decades, a variety of extraction techniques and analytical methodologies for xenobiotic's efficient extraction, identification, confirmation and quantification have been developed, ranging from traditional to advanced. The goal of this review is to give readers an overview of the evolution of numerous extraction and detection methods for pesticide residue analysis in fruits. The objective is to assist analysts in better understanding how the ever-changing regulatory landscape might drive the need for new analytical methodologies to be developed in order to comply with current standards and safeguard consumers.
Collapse
Affiliation(s)
- Swagata Mandal
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India; Department of Chemistry, Burdwan University, Burdwan, West Bengal 713104, India
| | - Rajlakshmi Poi
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India
| | - Dipak Kumar Hazra
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India
| | - Inul Ansary
- Department of Chemistry, Burdwan University, Burdwan, West Bengal 713104, India
| | - Sudip Bhattacharyya
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India
| | - Rajib Karmakar
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India.
| |
Collapse
|
2
|
Wang Y, He M, Chen B, Cao H, Liang Y, Hu B. Porous organic framework as coating for stir bar sorptive extraction of carbamate pesticides from corn and potato samples. Food Chem 2022; 397:133785. [PMID: 35914459 DOI: 10.1016/j.foodchem.2022.133785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 01/12/2023]
Abstract
Three porous organic frameworks (POFs) were synthesized by the reaction between phloroglucinol and 1,4-phthalaldehyde, 4,4'-biphenyldialdehyde or tris-(4-formylphenyl) amine; the products are named as POF-a, POF-b and POF-c, respectively. They were used to prepare POFs coated stir bars respectively for the extraction of four carbamate pesticides (CMPs). POF-c coated stir bar exhibited better adsorption performance than POF-a/b coated stir bar and commercial stir bars, probably due to the stronger conjugated structure and hydrophobicity of POF-c, and resultant hydrophobic, π-π and hydrogen bonding interactions between them. The adsorption mechanism for target CMPs was verified by characterization techniques and molecular dynamics simulation. A method of POF-c coated stir bar sorptive extraction-high performance liquid chromatography-variable wavelength ultraviolet detector was developed for the analysis of four CMPs in corn and potato samples. Under the optimal conditions, LODs of the method were between 0.017 and 0.048 μg/L, and the linear range for four CMPs was 0.1/0.2-200 μg/L.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Yang R, Wu J, Lu G, Huang X. Efficient capture of carbamate and triazole pesticides in environmental waters by functional groups-rich monolithic fibers prior to chromatographic quantification. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Jagirani MS, Ozalp O, Soylak M. New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review. Crit Rev Anal Chem 2021; 52:1343-1369. [PMID: 33560139 DOI: 10.1080/10408347.2021.1874867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focused on the green microextraction methods used for the extraction of pesticides from the environmental and food samples. Microextraction techniques have been explored and applied in various fields of analytical chemistry since its beginning, as evinced by the numerous reviews published. The success of any technique in science and technology is measured by the simplicity, environmentally friendly, and its applications; and the microextraction technique is highly successive. Deliberations were attentive to studies where efforts have been made to validate the methods through the inter-laboratory comparison study to assess the analytical performance of microextraction techniques against conventional methods. Succinctly, developed microextraction methods are shown to impart significant benefits over conventional techniques. Provided that the analytical community continues to put forward attention and resources into the growth and validation of the microextraction technique, a promising future for microextraction is forecasted.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
5
|
Graphene intercalated with carbon nanosphere: a novel solid-phase extraction sorbent for five carbamate pesticides. Mikrochim Acta 2020; 187:521. [DOI: 10.1007/s00604-020-04497-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/18/2020] [Indexed: 01/03/2023]
|
6
|
Wang R, Sun X, Wang X, Chen J, Wang B, Ji W. Spherical conjugated microporous polymers for solid phase microextraction of carbamate pesticides from water samples. J Chromatogr A 2020; 1626:461360. [DOI: 10.1016/j.chroma.2020.461360] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/13/2023]
|
7
|
Nasiri M, Ahmadzadeh H, Amiri A. Sample preparation and extraction methods for pesticides in aquatic environments: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115772] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Recent Applications and Newly Developed Strategies of Solid-Phase Microextraction in Contaminant Analysis: Through the Environment to Humans. SEPARATIONS 2019. [DOI: 10.3390/separations6040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present review aims to describe the recent and most impactful applications in pollutant analysis using solid-phase microextraction (SPME) technology in environmental, food, and bio-clinical analysis. The covered papers were published in the last 5 years (2014–2019) thus providing the reader with information about the current state-of-the-art and the future potential directions of the research in pollutant monitoring using SPME. To this end, we revised the studies focused on the investigation of persistent organic pollutants (POPs), pesticides, and emerging pollutants (EPs) including personal care products (PPCPs), in different environmental, food, and bio-clinical matrices. We especially emphasized the role that SPME is having in contaminant surveys following the path that goes from the environment to humans passing through the food web. Besides, this review covers the last technological developments encompassing the use of novel extraction coatings (e.g., metal-organic frameworks, covalent organic frameworks, PDMS-overcoated fiber), geometries (e.g., Arrow-SPME, multiple monolithic fiber-SPME), approaches (e.g., vacuum and cold fiber SPME), and on-site devices. The applications of SPME hyphenated with ambient mass spectrometry have also been described.
Collapse
|
9
|
Wang X, Feng T, Wang J, Hao L, Wang C, Wu Q, Wang Z. Preparation of magnetic porous covalent triazine-based organic polymer for the extraction of carbamates prior to high performance liquid chromatography-mass spectrometric detection. J Chromatogr A 2019; 1602:178-187. [DOI: 10.1016/j.chroma.2019.06.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 01/09/2023]
|
10
|
|
11
|
Sun T, Fan Y, Fan P, Geng F, Chen P, Zhao F. Use of graphene coated with ZnO nanocomposites for microextraction in packed syringe of carbamate pesticides from juice samples. J Sep Sci 2019; 42:2131-2139. [DOI: 10.1002/jssc.201900257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ting Sun
- College of Chemistry and Chemical EngineeringAnyang Normal University Anyang P. R. China
- Henan Province Key Laboratory of New Opto‐Electronic Functional Materials Anyang P. R. China
| | - Yuwan Fan
- College of Chemistry and Chemical EngineeringAnyang Normal University Anyang P. R. China
| | - Peizheng Fan
- College of Chemistry and Chemical EngineeringAnyang Normal University Anyang P. R. China
| | - Fengyun Geng
- College of Chemistry and Chemical EngineeringAnyang Normal University Anyang P. R. China
| | - Peiyu Chen
- College of Chemistry and Chemical EngineeringAnyang Normal University Anyang P. R. China
| | - Feng Zhao
- College of Chemistry and Chemical EngineeringAnyang Normal University Anyang P. R. China
- Henan Province Key Laboratory of New Opto‐Electronic Functional Materials Anyang P. R. China
| |
Collapse
|