1
|
Olabi M, Wätzig H. Quantitation of native and forced degraded collagens by capillary zone electrophoresis: Method development and validation. J Sep Sci 2023; 46:e2300516. [PMID: 37884462 DOI: 10.1002/jssc.202300516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
A new capillary zone electrophoresis method for collagen quantitation was developed and validated according to the International Council for Harmonization guideline Q2 (R1). The Sircol collagen assay and ultraviolet spectrometry were employed as reference methods. Capillary zone electrophoresis enables specific, simple, and fast determination within 9 min. It is less user-dependent and more automated than the Sircol collagen assay. With a limit of detection of 18.0 μg/mL, the new method is less sensitive than the Sircol collagen assay, which has a limit of detection of 6.5 μg/mL. Nonetheless, capillary zone electrophoresis covers a wider linearity range (50-400 μg/mL) compared to the Sircol collagen assay (5-80 μg/mL), with similar precision. Additional advantages of capillary zone electrophoresis are the ability to gain information on collagen integrity and to simultaneously determine native and denatured collagens. This approach represents a modern and legitimate alternative to the Sircol collagen assay. The developed method has been successfully applied to the study of three collagen products and samples from forced degradation.
Collapse
Affiliation(s)
- Mais Olabi
- Institute of Medicinal and Pharmaceutical Chemistry, Technical University of Braunschweig, Braunschweig, Germany
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Staab-Weijnitz CA, Onursal C, Nambiar D, Vanacore R. Assessment of Collagen in Translational Models of Lung Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:213-244. [PMID: 37195533 DOI: 10.1007/978-3-031-26625-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The extracellular matrix (ECM) plays an important role in lung health and disease. Collagen is the main component of the lung ECM, widely used for the establishment of in vitro and organotypic models of lung disease, and as scaffold material of general interest for the field of lung bioengineering. Collagen also is the main readout for fibrotic lung disease, where collagen composition and molecular properties are drastically changed and ultimately result in dysfunctional "scarred" tissue. Because of the central role of collagen in lung disease, quantification, determination of molecular properties, and three-dimensional visualization of collagen is important for both development and characterization of translational models of lung research. In this chapter, we provide a comprehensive overview on the various methodologies currently available for quantification and characterization of collagen including their detection principles, advantages, and disadvantages.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität and Helmholtz Zentrum München, Munich, Germany.
| | - Ceylan Onursal
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität and Helmholtz Zentrum München, Munich, Germany
| | - Deepika Nambiar
- Center for Matrix Biology, Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roberto Vanacore
- Center for Matrix Biology, Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Pesek JJ, Matyska MT, Hiltz T, McCall J. Application of a Cholesterol-Based Stationary Phase for the Analysis of Brevetoxins. J Sep Sci 2023; 46:e2200666. [PMID: 36369995 DOI: 10.1002/jssc.202200666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
A high-performance liquid chromatography protocol for the analysis of brevetoxins has been developed using a silica hydride-based cholesterol column. Brevetoxins are neurotoxins produced by harmful algae that have additional potential as drugs for a number of illnesses/diseases. To develop the optimum conditions, a number of different experimental approaches were tested. These include isocratic and gradient elution, different organic mobile phase components, and temperature variations. A separate protocol was developed for the compounds brevenal and brevenol, also produced by the same algae that make brevetoxins. Brevenal is a natural product under investigation as a therapy for chronic respiratory diseases, such as cystic fibrosis or asthma. The goal of this study was to provide a protocol for the analysis of these compounds that could be further developed into a validated method depending on a particular laboratory's capabilities and to highlight some of the unique features of the cholesterol stationary phase.
Collapse
Affiliation(s)
- Joseph J Pesek
- Department of Chemistry, San Jose State University, San Jose, California, USA
| | - Maria T Matyska
- Department of Chemistry, San Jose State University, San Jose, California, USA
| | - Tanya Hiltz
- MicroSolv Technology Corporation, Leland, North Carolina, USA
| | - Jennifer McCall
- University of North Carolina Wilmington, College of Health and Human Services, Wilmington, North Carolina, USA
| |
Collapse
|
4
|
Gonzalez-Leon EA, Hu JC, Athanasiou KA. Yucatan Minipig Knee Meniscus Regional Biomechanics and Biochemical Structure Support its Suitability as a Large Animal Model for Translational Research. Front Bioeng Biotechnol 2022; 10:844416. [PMID: 35265605 PMCID: PMC8899164 DOI: 10.3389/fbioe.2022.844416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Knee meniscus injuries are the most frequent causes of orthopedic surgical procedures in the U.S., motivating tissue engineering attempts and the need for suitable animal models. Despite extensive use in cardiovascular research and the existence of characterization data for the menisci of farm pigs, the farm pig may not be a desirable preclinical model for the meniscus due to rapid weight gain. Minipigs are conducive to in vivo experiments due to their slower growth rate than farm pigs and similarity in weight to humans. However, characterization of minipig knee menisci is lacking. The objective of this study was to extensively characterize structural and functional properties within different regions of both medial and lateral Yucatan minipig knee menisci to inform this model’s suitability as a preclinical model for meniscal therapies. Menisci measured 23.2–24.8 mm in anteroposterior length (33–40 mm for human), 7.7–11.4 mm in width (8.3–14.8 mm for human), and 6.4–8.4 mm in peripheral height (5–7 mm for human). Per wet weight, biochemical evaluation revealed 23.9–31.3% collagen (COL; 22% for human) and 1.20–2.57% glycosaminoglycans (GAG; 0.8% for human). Also, per dry weight, pyridinoline crosslinks (PYR) were 0.12–0.16% (0.12% for human) and, when normalized to collagen content, reached as high as 1.45–1.96 ng/µg. Biomechanical testing revealed circumferential Young’s modulus of 78.4–116.2 MPa (100–300 MPa for human), circumferential ultimate tensile strength (UTS) of 18.2–25.9 MPa (12–18 MPa for human), radial Young’s modulus of 2.5–10.9 MPa (10–30 MPa for human), radial UTS of 2.5–4.2 MPa (1–4 MPa for human), aggregate modulus of 157–287 kPa (100–150 kPa for human), and shear modulus of 91–147 kPa (120 kPa for human). Anisotropy indices ranged from 11.2–49.4 and 6.3–11.2 for tensile stiffness and strength (approximately 10 for human), respectively. Regional differences in mechanical and biochemical properties within the minipig medial meniscus were observed; specifically, GAG, PYR, PYR/COL, radial stiffness, and Young’s modulus anisotropy varied by region. The posterior region of the medial meniscus exhibited the lowest radial stiffness, which is also seen in humans and corresponds to the most prevalent location for meniscal lesions. Overall, similarities between minipig and human menisci support the use of minipigs for meniscus translational research.
Collapse
|
5
|
Bielajew BJ, Hu JC, Athanasiou KA. Methodology to Quantify Collagen Subtypes and Crosslinks: Application in Minipig Cartilages. Cartilage 2021; 13:1742S-1754S. [PMID: 34823380 PMCID: PMC8804780 DOI: 10.1177/19476035211060508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION This study develops assays to quantify collagen subtypes and crosslinks with liquid chromatography-mass spectrometry (LC-MS) and characterizes the cartilages in the Yucatan minipig. METHODS For collagen subtyping, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was performed on tissues digested in trypsin. For collagen crosslinks, LC-MS analysis was performed on hydrolysates. Samples were also examined histologically and with bottom-up proteomics. Ten cartilages (femoral condyle, femoral head, facet joint, floating rib, true rib, auricular cartilage, annulus fibrosus, 2 meniscus locations, and temporomandibular joint disc) were analyzed. RESULTS The collagen subtyping assay quantified collagen types I and II. The collagen crosslinks assay quantified mature and immature crosslinks. Collagen subtyping revealed that collagen type I predominates in fibrocartilages and collagen type II in hyaline cartilages, as expected. Elastic cartilage and fibrocartilages had more mature collagen crosslink profiles than hyaline cartilages. Bottom-up proteomics revealed a spectrum of ratios between collagen types I and II, and quantified 42 proteins, including 24 collagen alpha-chains and 12 minor collagen types. DISCUSSION The novel assays developed in this work are sensitive, inexpensive, and use a low operator time relative to other collagen analysis methods. Unlike the current collagen assays, these assays quantify collagen subtypes and crosslinks without an antibody-based approach or lengthy chromatography. They apply to any collagenous tissue, with broad applications in tissue characterization and tissue engineering. For example, a novel finding of this work was the presence of a large quantity of collagen type III in the white-white knee meniscus and a spectrum of hyaline and fibrous cartilages.
Collapse
Affiliation(s)
- Benjamin J. Bielajew
- Department of Biomedical Engineering,
University of California, Irvine, Irvine, CA, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering,
University of California, Irvine, Irvine, CA, USA
| | | |
Collapse
|
6
|
Link JM, Hu JC, Athanasiou KA. Chondroitinase ABC Enhances Integration of Self-Assembled Articular Cartilage, but Its Dosage Needs to Be Moderated Based on Neocartilage Maturity. Cartilage 2021; 13:672S-683S. [PMID: 32441107 PMCID: PMC8804832 DOI: 10.1177/1947603520918653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To enhance the in vitro integration of self-assembled articular cartilage to native articular cartilage using chondroitinase ABC. DESIGN To examine the hypothesis that chondroitinase ABC (C-ABC) integration treatment (C-ABCint) would enhance integration of neocartilage of different maturity levels, this study was conducted in 2 phases. In phase I, the impact on integration of 2 treatments, TCL (TGF-β1, C-ABC, and lysyl oxidase like 2) and C-ABCint, was examined via a 2-factor, full factorial design. In phase II, construct maturity (2 levels) and C-ABCint concentration (3 levels) were the factors in a full factorial design to determine whether the effective C-ABCint dose was dependent on neocartilage maturity level. Neocartilages formed or treated per the factors above were placed into native cartilage rings, cultured for 2 weeks, and, then, integration was studied histologically and mechanically. Prior to integration, in phase II, a set of treated constructs were also assayed to provide a baseline of properties. RESULTS In phase I, C-ABCint and TCL treatments synergistically enhanced interface Young's modulus by 6.2-fold (P = 0.004) and increased interface tensile strength by 3.8-fold (P = 0.02) compared with control. In phase II, the interaction of the factors C-ABCint and construct maturity was significant (P = 0.0004), indicating that the effective C-ABCint dose to improve interface Young's modulus is dependent on construct maturity. Construct mechanical properties were preserved regardless of C-ABCint dose. CONCLUSIONS Applying C-ABCint to neocartilage is an effective integration strategy with translational potential, provided its dose is calibrated appropriately based on implant maturity, that also preserves implant biomechanical properties.
Collapse
Affiliation(s)
- Jarrett M. Link
- Department of Biomedical Engineering,
University of California, Irvine, CA, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering,
University of California, Irvine, CA, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering,
University of California, Irvine, CA, USA,Kyriacos A. Athanasiou, Distinguished
Professor Henry Samueli Chair, Director, DELTAi (Driving
Engineering and Life-science Translational Advances @ Irvine), Department of
Biomedical Engineering, Henry Samueli School of Engineering, University of
California, 3418 Engineering Hall, Irvine, CA 92697, USA.
| |
Collapse
|
7
|
Naffa R, Gaar J, Zhang W, Maidment C, Shehadi I, Etxabide A, Holmes G, Kavianinia I, Brimble M. Rapid and simultaneous analysis of advanced glycation end products on silica hydride column: Comparison of ultraviolet, fluorescence, and mass spectrometry detectors. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rafea Naffa
- NZ Leather and Shoe Research Association (LASRA®) Palmerston North New Zealand
| | - Jakob Gaar
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | - Wenkai Zhang
- NZ Leather and Shoe Research Association (LASRA®) Palmerston North New Zealand
| | - Catherine Maidment
- NZ Leather and Shoe Research Association (LASRA®) Palmerston North New Zealand
| | - Ihsan Shehadi
- College of Science Department of Chemistry University of Sharjah Sharjah UAE
| | - Alaitz Etxabide
- School of Chemical Sciences University of Auckland Auckland New Zealand
- ALITEC Research Group Department of Agronomy Biotechnology and Food School of Agricultural Engineering Public University of Navarre (upna/nup) Pamplona‐Iruña Spain
| | - Geoff Holmes
- NZ Leather and Shoe Research Association (LASRA®) Palmerston North New Zealand
| | - Iman Kavianinia
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | - Margaret Brimble
- School of Chemical Sciences University of Auckland Auckland New Zealand
| |
Collapse
|
8
|
Bielajew BJ, Hu JC, Athanasiou KA. Collagen: quantification, biomechanics, and role of minor subtypes in cartilage. NATURE REVIEWS. MATERIALS 2020; 5:730-747. [PMID: 33996147 PMCID: PMC8114887 DOI: 10.1038/s41578-020-0213-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 05/02/2023]
Abstract
Collagen is a ubiquitous biomaterial in vertebrate animals. Although each of its 28 subtypes contributes to the functions of many different tissues in the body, most studies on collagen or collagenous tissues have focussed on only one or two subtypes. With recent developments in analytical chemistry, especially mass spectrometry, significant advances have been made toward quantifying the different collagen subtypes in various tissues; however, high-throughput and low-cost methods for collagen subtype quantification do not yet exist. In this Review, we introduce the roles of collagen subtypes and crosslinks, and describe modern assays that enable a deep understanding of tissue physiology and disease states. Using cartilage as a model tissue, we describe the roles of major and minor collagen subtypes in detail; discuss known and unknown structure-function relationships; and show how tissue engineers may harness the functional characteristics of collagen to engineer robust neotissues.
Collapse
Affiliation(s)
- Benjamin J. Bielajew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
9
|
Chemical and Structural Composition of Alpaca (Vicugna pacos) Skin with a Focus on Collagen Crosslinks. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Bolger MW, Romanowicz GE, Kohn DH. Advancements in composition and structural characterization of bone to inform mechanical outcomes and modelling. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 11:76-84. [PMID: 32864522 DOI: 10.1016/j.cobme.2019.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Advancements in imaging, computing, microscopy, chromatography, spectroscopy and biological manipulations of animal models, have allowed for a more thorough examination of the hierarchical structure and composition of the skeleton. The ability to map cellular and molecular changes to nano-scale chemical composition changes (mineral, collagen cross-links) and structural changes (porosity, lacuno-canalicular network) to whole bone mechanics is at the forefront of an exciting era of discovery. In addition, there is increasing ability to genetically mimic phenotypes of human disease in animal models to study these structural and compositional changes. Combined, these recent developments have increased the ability to understand perturbations at multiple length scales to better realize the structure-function relationship in bone and inform biomechanical models. The intent of this review is to describe the multiple scales at which bone can characterized, highlighting new techniques such that structural, compositional, and biological changes can be incorporated into biomechanical modeling.
Collapse
Affiliation(s)
- Morgan W Bolger
- Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Genevieve E Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| |
Collapse
|
11
|
Gonzalez-Leon EA, Bielajew BJ, Hu JC, Athanasiou KA. Engineering self-assembled neomenisci through combination of matrix augmentation and directional remodeling. Acta Biomater 2020; 109:73-81. [PMID: 32344175 DOI: 10.1016/j.actbio.2020.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Knee meniscus injury is frequent, resulting in over 1 million surgeries annually in the United States and Europe. Because of the near-avascularity of this fibrocartilaginous tissue and its intrinsic lack of healing, tissue engineering has been proposed as a solution for meniscus repair and replacement. This study describes an approach employing bioactive stimuli to enhance both extracellular matrix content and organization of neomenisci toward augmenting their mechanical properties. Self-assembled fibrocartilages were treated with TGF-β1, chondroitinase ABC, and lysyl oxidase-like 2 (collectively termed TCL) in addition to lysophosphatidic acid (LPA). TCL + LPA treatment synergistically improved circumferential tensile stiffness and strength, significantly enhanced collagen and pyridinoline crosslink content per dry weight, and achieved tensile anisotropy (circumferential/radial) values of neomenisci close to 4. This study utilizes a combination of bioactive stimuli for use in tissue engineering studies, providing a promising path toward deploying these neomenisci as functional repair and replacement tissues. STATEMENT OF SIGNIFICANCE: This study utilizes a scaffold-free approach, which strays from the tissue engineering paradigm of using scaffolds with cells and bioactive factors to engineer neotissue. While self-assembled neomenisci have attained compressive properties akin to native tissue, tensile properties still require improvement before being able to deploy engineered neomenisci as functional tissue repair or replacement options. In order to augment tensile properties, this study utilized bioactive factors known to augment matrix content in combination with a soluble factor that enhances matrix organization and anisotropy via cell traction forces. Using a bioactive factor to enhance matrix organization mitigates the need for bioreactors used to apply mechanical stimuli or scaffolds to induce proper fiber alignment.
Collapse
Affiliation(s)
- Erik A Gonzalez-Leon
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697.
| | - Benjamin J Bielajew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697.
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697.
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697.
| |
Collapse
|
12
|
Mehta M, Naffa R, Maidment C, Holmes G, Waterland M. RAMAN AND ATR-FTIR SPECTROSCOPY TOWARDS CLASSIFICATION OF WET BLUE BOVINE LEATHER USING RATIOMETRIC AND CHEMOMETRIC ANALYSIS. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-019-0017-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
There is a substantial loss of value in bovine leather every year due to a leather quality defect known as “looseness”. Data show that 7% of domestic hide production is affected to some degree, with a loss of $35 m in export returns. This investigation is devoted to gaining a better understanding of tight and loose wet blue leather based on vibrational spectroscopy observations of its structural variations caused by physical and chemical changes that also affect the tensile and tear strength. Several regions from the wet blue leather were selected for analysis. Samples of wet blue bovine leather were collected and studied in the sliced form using Raman spectroscopy (using 532 nm excitation laser) and Attenuated Total Reflectance - Fourier Transform InfraRed (ATR-FTIR) spectroscopy. The purpose of this study was to use ATR-FTIR and Raman spectra to classify distal axilla (DA) and official sampling position (OSP) leather samples and then employ univariate or multivariate analysis or both. For univariate analysis, the 1448 cm− 1 (CH2 deformation) band and the 1669 cm− 1 (Amide I) band were used for evaluating the lipid-to-protein ratio from OSP and DA Raman and IR spectra as indicators of leather quality. Curve-fitting by the sums-of-Gaussians method was used to calculate the peak area ratios of 1448 and 1669 cm− 1 band. The ratio values obtained for DA and OSP are 0.57 ± 0.099, 0.73 ± 0.063 for Raman and 0.40 ± 0.06 and 0.50 ± 0.09 for ATR-FTIR. The results provide significant insight into how these regions can be classified. Further, to identify the spectral changes in the secondary structures of collagen, the Amide I region (1600–1700 cm− 1) was investigated and curve-fitted-area ratios were calculated. The 1648:1681 cm− 1 (non-reducing: reducing collagen types) band area ratios were used for Raman and 1632:1650 cm− 1 (triple helix: α-like helix collagen) for IR. The ratios show a significant difference between the two classes. To support this qualitative analysis, logistic regression was performed on the univariate data to classify the samples quantitatively into one of the two groups. Accuracy for Raman data was 90% and for ATR-FTIR data 100%. Both Raman and ATR-FTIR complemented each other very well in differentiating the two groups. As a comparison, and to reconfirm the classification, multivariate analysis was performed using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The results obtained indicate good classification between the two leather groups based on protein and lipid content. Principal component score 2 (PC2) distinguishes OSP and DA by symmetrically grouping samples at positive and negative extremes. The study demonstrates an excellent model for wider research on vibrational spectroscopy for early and rapid diagnosis of leather quality.
Graphical abstract
Collapse
|
13
|
Naffa R, Holmes G, Zhang W, Maidment C, Shehadi I, Norris G. Comparison of liquid chromatography with fluorescence detection to liquid chromatography-mass spectrometry for amino acid analysis with derivatisation by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate: Applications for analysis of amino acids in skin. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
14
|
Gaar J, Naffa R, Brimble M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org Chem Front 2020. [DOI: 10.1039/d0qo00624f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review summarized the enzymatic and non-enzymatic crosslinks found in collagen and elastin and their organic synthesis.
Collapse
Affiliation(s)
- Jakob Gaar
- School of Chemical Sciences
- The University of Auckland
- Auckland Central 1010
- New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery
| | - Rafea Naffa
- New Zealand Leather and Shoe Research Association
- Palmerston North
- New Zealand
| | - Margaret Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland Central 1010
- New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
15
|
Zhang Y, Naffa R, Garvey CJ, Maidment CA, Prabakar S. Quantitative and structural analysis of isotopically labelled natural crosslinks in type I skin collagen using LC-HRMS and SANS. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2019. [DOI: 10.1186/s42825-019-0012-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractCollagen structure in biological tissues imparts its intrinsic physical properties by the formation of several covalent crosslinks. For the first time, two major crosslinks in the skin dihydroxylysinonorleucine (HLNL) and histidinohydroxymerodesmosine (HHMD), were isotopically labelled and then analysed by liquid-chromatography high-resolution accurate-mass mass spectrometry (LC-HRMS) and small-angle neutron scattering (SANS). The isotopic labelling followed by LC-HRMS confirmed the presence of one imino group in both HLNL and HHMD, making them more susceptible to degrade at low pH. The structural changes in collagen due to extreme changes in the pH and chrome tanning were highlighted by the SANS contrast variation between isotopic labelled and unlabelled crosslinks. This provided a better understanding of the interaction of natural crosslinks with the chromium sulphate in collagen suggesting that the development of a benign crosslinking method can help retain the intrinsic physical properties of the leather. This analytical method can also be applied to study artificial crosslinking in other collagenous tissues for biomedical applications.Graphical abstract
Collapse
|
16
|
Naffa R, Pesek J. Separation of Natural Collagen Crosslinks Using Buffer and Ion-pairing Agent Free Solvents on Silica Hydride Column for Mass Spectrometry Detection. Bio Protoc 2019; 9:e3224. [PMID: 33655011 DOI: 10.21769/bioprotoc.3224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 11/02/2022] Open
Abstract
In this protocol we describe the separation of collagen crosslinks in biological tissues and samples including skin, tendon, cartilage, bone and urine. The existing methods use either cation exchange chromatography followed by post-column derivatization with ninhydrin or reverse phase chromatography with mass spectrometry detection. The cation exchange chromatography method has limited sensitivity and long run times while reverse phase chromatography requires strong ion-pairing. In this method, the sample containing crosslinks is applied on a diamond hydride column using water and acetonitrile solvents containing 0.1% (w/v) formic acid. Eight crosslinks are eluted separately from the column and detected by mass spectrometry in the sub-pmol range. By using this method, it is possible to separate all crosslinks of collagen in several biological samples without the need for ion-pairing agent or derivatization for detection.
Collapse
Affiliation(s)
- Rafea Naffa
- NZ Leather and Shoe Research Association (LASRA®), Palmerston North, New Zealand
| | - Joseph Pesek
- Department of Chemistry, San Jose State University, San Jose, CA 95112, USA
| |
Collapse
|
17
|
Naffa R, Edwards PJB, Norris G. Isolation and characterization of collagen type I crosslink from skin: high-resolution NMR reveals diastereomers of hydroxylysinonorleucine crosslink. Amino Acids 2019; 51:705-715. [PMID: 30788600 DOI: 10.1007/s00726-019-02708-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
Abstract
Skin is made up of mainly collagen type I and its structure is stabilised by the formation of covalent immature and mature crosslinks. In this study, collagen immature crosslink hydroxylysinonorleucine (HLNL) was isolated from bovine skin in high purity using two sequential purification steps. These consisted of preparative fibrous cellulose and size exclusion chromatography. The purified crosslink was then analysed using tandem mass spectrometry and high-resolution nuclear magnetic resonance (NMR) spectroscopy. The mass of singly and doubly charged ions of HLNL was 292.1865 and 146.5970 m/z and their optimised fragmentation energy was 17 keV and 5 keV, respectively. The 13C NMR of HLNL showed a doubled-up peak at 67.84 and 67.91 ppm which corroborated a diastereomeric form of collagen immature crosslink HLNL and both are chiroptically indistinguishable. The chemical structure was fully resolved using 1H, 13C and DEPT-135 high-resolution NMR spectroscopy and compared with other previous studies. We also obtained for the first time the 2D NMR spectra COSY and HSQC of HLNL. We therefore suggested that collagen organization into specific fibrils' orientation may be affected by the different configuration of these diastereomers of HLNL.
Collapse
Affiliation(s)
- Rafea Naffa
- NZ Leather and Shoe Research Association (LASRA®), Palmerston North, New Zealand. .,Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Patrick J B Edwards
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Gillian Norris
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|