1
|
A switchable deep eutectic solvent for the homogeneous liquid-liquid microextraction of flavonoids from "Scutellariae Radix". J Chromatogr A 2023; 1688:463712. [PMID: 36528896 DOI: 10.1016/j.chroma.2022.463712] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/19/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
A homogeneous liquid-liquid microextraction (HLLME) was established based on a switchable deep eutectic solvent (DES) for the preconcentration and determination of six flavonoids with different polarity in "Scutellariae Radix" combined with high performance liquid chromatography (HPLC). A switchable DES composed of N,N-dimethylethanolamine (DMEA) and heptanoic acid was used as an extraction solvent in the HLLME method, which was miscible thoroughly with the aqueous sample phase initially, and then underwent rapid phase transition induced by the addition of an inorganic acid. After the extraction, the upper hydrophobic layer was recovered for HPLC analysis. Different experimental parameters were optimized, and the optimal extraction conditions were as follows: the switchable DES extraction phase, 90 µL of DMEA-heptanoic acid (1:1 mole ratio); phase-switching trigger, 100 µL of 5 mol/L HCl; 10% (w/v) of salt concentration in sample phase; extraction time, 0.3 min. Furthermore, the structures of the switchable DES and the upper hydrophobic layer were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and differential scanning calorimetry to illustrate the phase-switching mechanism of the extraction phase during the extraction process. Under the optimized conditions, the enrichment factors for six target analytes were between 0.4 and 104. The calibration curves were linear (r≥0.9866) in the range of 0.033-8.65 mg/L for scutellarin, 0.022-5.77 mg/L for baicalin, 0.0033-0.865 mg/L for scutellarein and wogonoside, and 0.0022-0.577 mg/L for baicalein and wogonin, respectively. Low detection limits (≤8.0 × 10-3 mg/L) and quantification limits (≤2.4 × 10-2 mg/L) as well as good precisions (relative standard deviations lower than 9.2%) and acceptable accuracies (spiked recoveries 89.3-114.4%) were also obtained. The proposed method is a simple, fast, and eco-friendly sample pretreatment method.
Collapse
|
2
|
Kannouma RE, Hammad MA, Kamal AH, Mansour FR. Miniaturization of Liquid-Liquid extraction; the barriers and the enablers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Bouchouareb K, Combès A, Pichon V. Determination of nerve agent biomarkers in human urine by a natural hydrophobic deep eutectic solvent-parallel artificial liquid membrane extraction technique. Talanta 2022; 249:123704. [PMID: 35738205 DOI: 10.1016/j.talanta.2022.123704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Alkyl methyl phosphonic acids (AMPAs) are the major metabolites of organophosphorus nerve agents. A method based on the use of natural hydrophobic deep eutectic solvents as supported liquid membrane in parallel artificial liquid microextraction (PALME) combined with LC-MS/MS analysis was developed and applied to their extraction from urine samples. PALME is a miniaturized liquid-phase extraction method performed in a multiwell plate format where the aqueous sample and the aqueous acceptor phase are separated by a flat membrane impregnated with an organic solvent. In this study, we investigated the possibility of replacing the harmful conventional organic solvent by an emerging green solvent, a coumarin/thymol-based deep eutectic solvent, in ordered to raise the greenness of the sample preparation method. Linear response was obtained in an interval of 0.5, 5 or 10-100 ng/ml depending on the AMPAs with a determination coefficients (R2s) ranging from 0.9751 to 0.9989 for their determination in not treated urine samples. Enrichment factors (EFs) up to 12.65 were obtained, and repeatability was within 8.90-16.28% RSD (n = 12). The limit of quantifications (LOQs: S/N ≥ 10) of the whole analytical procedure were in the range from 0.04 to 5.35 ng/ml. In addition to its good sensitivity, the presented method permitted the treatment of 192 samples in 120 min (equivalent to 37.5 s/sample), which places it as one of the most powerful preparation technique for biomonitoring of civilian or military people exposed to nerve agents in case of public health emergency. Indeed, the developed procedure combined sensitivity, high-throughput, greenness, simplicity and practicality for the determination of five acidic polar AMPAs in urine samples.
Collapse
Affiliation(s)
- Khirreddine Bouchouareb
- Department of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France; Sorbonne Université, Campus UPMC, Paris, France.
| |
Collapse
|
4
|
Taghizadeh M, Ebrahimi M, Fooladi E, Yoosefian M. Preconcentration and determination of five antidepressants from human milk and urine samples by stir bar filled magnetic ionic liquids using liquid-liquid-liquid microextraction-high performance liquid chromatography. J Sep Sci 2022; 45:1434-1444. [PMID: 35231956 DOI: 10.1002/jssc.202100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/11/2022]
Abstract
A sensitive and straightforward liquid-liquid-liquid microextraction method was developed to preconcentrate and cleanup antidepressants, including mirtazapine, venlafaxine, escitalopram, fluoxetine, and fluvoxamine, from biological samples before analyzing with high-performance liquid chromatography. The essential novelty of this study is using magnetic ionic liquids as the extraction phase in the lumen of hollow fiber and preparing a liquid magnetic stir bar. In the method, polypropylene hollow fiber was utilized as the permeable membrane for the analyte extraction. Six magnetic ionic liquids consisting of the transition metal and rare earth compounds were synthesized and then injected hollow fiber lumen as acceptor phase to extract the antidepressants. Besides, 3-pentanol as a water-immiscible solvent was impregnated in the hollow fiber wall pores. The effective factors in the method were optimized with the central composition design. The resultant calibration curves were linear over the concentration range of 0.8-400.0 ng mL-1 (R2 ≥ 0.996). The method displayed the proper detection limit (0.11-0.24 ng mL-1 ), the reasonable limit of quantification (≤0.79 ng mL-1 ), wide linear ranges, high preconcentration factors (≥294.3), and suitable relative standard deviation (2.31-5.47%) for measuring antidepressant medications. Analysis of human milk and urine samples showed acceptable recoveries of 96.5-103.8% with excellent relative standard deviations lower than 5.95%. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohabat Taghizadeh
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mahmoud Ebrahimi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ebrahim Fooladi
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Mehdi Yoosefian
- Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
5
|
Deep eutectic solvents in liquid-phase microextraction: Contribution to green chemistry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116478] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Xue J, Yang L, Chen X, Bai XH, Hu S. Vortex-assisted dispersive liquid-phase microextraction for the analysis of main active compounds from Zi-Cao-Cheng-Qi decoction based on a hydrophobic deep eutectic solvent. J Sep Sci 2021; 44:4376-4383. [PMID: 34693642 DOI: 10.1002/jssc.202100270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/25/2023]
Abstract
In this study, a vortex-assisted hydrophobic deep eutectic solvent dispersive liquid-phase microextraction was developed and used for the extraction and preconcentration of six main active compounds in Zi-Cao-Cheng-Qi decoction. The deep eutectic solvent, prepared by mixing tetrabutylammonium chloride and hexanoic acid at a molar ratio of 1:1, was added to the sample solution containing the analytes. In the absence of disperser, the extractant was rapidly dispersed into fine droplets by the aid of vortex and adequately contacted with the analytes. Some key parameters affecting the approach including extraction solvent type and volume, sample phase pH, extraction time, centrifugation time, and salt concentration were investigated and optimized. Under the optimum conditions, enrichment factors of the target analytes were in the range of 3-330. The calibration graphs were linear with a correlation coefficient (r) ≥ 0.9929. The detection limits were 0.3-0.9 ng/mL, and the satisfactory precisions (relative standard deviations, 0.5-8.9%) and accuracies (relative recoveries, 91.1-102.2%) were also obtained. The developed method was rapid (only 2 min), eco-friendly, effective, and easy to operate. And it has been successfully applied to simultaneous extraction, enrichment, and determination of the main active compounds in a traditional Chinese medicinal formula coupled with high-performance liquid chromatography.
Collapse
Affiliation(s)
- Jiao Xue
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China.,Cancer Institute, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, P. R. China.,Qingdao Cancer Institute, Qingdao University, Qingdao, P. R. China
| | - Li Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Xiao-Hong Bai
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
7
|
Serna-Vázquez J, Ahmad MZ, Boczkaj G, Castro-Muñoz R. Latest Insights on Novel Deep Eutectic Solvents (DES) for Sustainable Extraction of Phenolic Compounds from Natural Sources. Molecules 2021; 26:5037. [PMID: 34443623 PMCID: PMC8401793 DOI: 10.3390/molecules26165037] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
Phenolic compounds have long been of great importance in the pharmaceutical, food, and cosmetic industries. Unfortunately, conventional extraction procedures have a high cost and are time consuming, and the solvents used can represent a safety risk for operators, consumers, and the environment. Deep eutectic solvents (DESs) are green alternatives for extraction processes, given their low or non-toxicity, biodegradability, and reusability. This review discusses the latest research (in the last two years) employing DESs for phenolic extraction, solvent components, extraction yields, extraction method characteristics, and reviewing the phenolic sources (natural products, by-products, wastes, etc.). This work also analyzes and discusses the most relevant DES-based studies for phenolic extraction from natural sources, their extraction strategies using DESs, their molecular mechanisms, and potential applications.
Collapse
Affiliation(s)
- Julio Serna-Vázquez
- Tecnologico de Monterrey, Campus Ciudad de México, Calle del Puente 222, Ejidos de Huipulco, Ciudad de México 14380, Mexico;
| | - Mohd Zamidi Ahmad
- Organic Materials Innovation Center (OMIC), Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland;
| | - Roberto Castro-Muñoz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland;
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
| |
Collapse
|
8
|
Kanu AB. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J Chromatogr A 2021; 1654:462444. [PMID: 34380070 DOI: 10.1016/j.chroma.2021.462444] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022]
Abstract
This review article compares and contrasts sample preparation techniques coupled with high-performance liquid chromatography (HPLC) and describes applications developed in biomedical, forensics, and environmental/industrial hygiene in the last two decades. The proper sample preparation technique can offer valued data for a targeted application when coupled to HPLC and a suitable detector. Improvements in sample preparation techniques in the last two decades have resulted in efficient extraction, cleanup, and preconcentration in a single step, thus providing a pathway to tackle complex matrix applications. Applications such as biological therapeutics, proteomics, lipidomics, metabolomics, environmental/industrial hygiene, forensics, glycan cleanup, etc., have been significantly enhanced due to improved sample preparation techniques. This review looks at the early sample preparation techniques. Further, it describes eight sample preparation technique coupled to HPLC that has gained prominence in the last two decades. They are (1) solid-phase extraction (SPE), (2) liquid-liquid extraction (LLE), (3) gel permeation chromatography (GPC), (4) Quick Easy Cheap Effective Rugged, Safe (QuEChERS), (5) solid-phase microextraction (SPME), (6) ultrasonic-assisted solvent extraction (UASE), and (7) microwave-assisted solvent extraction (MWASE). SPE, LLE, GPC, QuEChERS, and SPME can be used offline and online with HPLC. UASE and MWASE can be used offline with HPLC but have also been combined with the online automated techniques of SPE, LLE, GPC, or QuEChERS for targeted analysis. Three application areas of biomedical, forensics, and environmental/industrial hygiene are reviewed for the eight sample preparation techniques. Three hundred and twenty references on the eight sample preparation techniques published over the last two decades (2001-2021) are provided. Other older references were included to illustrate the historical development of sample preparation techniques.
Collapse
Affiliation(s)
- A Bakarr Kanu
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, United States.
| |
Collapse
|
9
|
Benedé JL, Rodríguez E, Chisvert A, Salvador A. Rapid and Simple Determination of Honokiol and Magnolol in Cosmetic Products by Liquid Chromatography with Ultraviolet Detection. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1808983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Juan L. Benedé
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, Spain
| | - Elena Rodríguez
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, Spain
| | - Alberto Chisvert
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, Spain
| | - Amparo Salvador
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, Spain
| |
Collapse
|
10
|
Abbasi NM, Farooq MQ, Anderson JL. Modulating solvation interactions of deep eutectic solvents formed by ammonium salts and carboxylic acids through varying the molar ratio of hydrogen bond donor and acceptor. J Chromatogr A 2021; 1643:462011. [PMID: 33799072 DOI: 10.1016/j.chroma.2021.462011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Deep eutectic solvents (DESs) have gained increasing popularity in separation science due to the fact that their physico-chemical properties can be easily fine-tuned by varying the type or ratio of hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD). While it is well-known that the molar ratio of HBA/HBD affects the melting point of a eutectic mixture, much less is understood regarding its effect on the magnitude of individual solvation interactions. This is largely due to the fact that established solvatochromic dye methods lack sensitivity when the HBA/HBD ratio is varied slightly in a eutectic mixture. Herein, this study is the first to measure the variation of DES solvation interactions with small changes in the molar ratio of HBA/HBD using inverse gas chromatography (IGC). Solute-solvent interactions of three different DES systems comprised of ammonium salts and organic acids were examined. The probe molecules were studied for 18 eutectic mixtures of varied HBA and HBD composition. DES hydrogen bond basicity, hydrogen bond acidity, and dispersive-type interactions exhibited the greatest change when the molar ratio of HBA/HBD was varied in the eutectic mixture. Results from this study demonstrate that the HBA/HBD ratio can be used to modulate the solvation characteristics for this class of DESs in separations and that the stoichiometric ratio of the HBA/HBD is important in ensuring their reproducible preparation.
Collapse
Affiliation(s)
- Nabeel Mujtaba Abbasi
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Muhammad Qamar Farooq
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Jared L Anderson
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
| |
Collapse
|
11
|
Mohammadi P, Masrournia M, Es’haghi Z, Pordel M. Hollow fiber coated Fe3O4@Maleamic acid-functionalized graphene oxide as a sorbent for stir bar sorptive extraction of ibuprofen, aspirin, and venlafaxine in human urine samples before determining by gas chromatography–mass spectrometry. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02185-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Plastiras OE, Andreasidou E, Samanidou V. Microextraction Techniques with Deep Eutectic Solvents. Molecules 2020; 25:E6026. [PMID: 33352701 PMCID: PMC7767243 DOI: 10.3390/molecules25246026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/20/2023] Open
Abstract
In this review, the ever-increasing use of deep eutectic solvents (DES) in microextraction techniques will be discussed, focusing on the reasons needed to replace conventional extraction techniques with greener approaches that follow the principles of green analytical chemistry. The properties of DES will be discussed, pinpointing their exceptional performance and analytical parameters, justifying their current extensive scientific interest. Finally, a variety of applications for commonly used microextraction techniques will be reported.
Collapse
Affiliation(s)
| | | | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (O.-E.P.); (E.A.)
| |
Collapse
|
13
|
Peng LQ, Cao J. Modern microextraction techniques for natural products. Electrophoresis 2020; 42:219-232. [PMID: 33215711 DOI: 10.1002/elps.202000248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 11/11/2022]
Abstract
Natural product analysis has gained wide attention in recent years, especially for herbal medicines, which contain complex ingredients and play a significant clinical role in the therapy of numerous diseases. The constituents of natural products are usually found at low concentrations, and the matrices are complex. Thus, the extraction of target compounds from natural products before analysis by analytical instruments is very significant for human health and its wide application. The commonly used traditional extraction methods are time-consuming, using large amounts of sample and organic solvents, as well as expensive and inefficient. Recently, microextraction techniques have been used for natural product extraction to overcome the disadvantages of conventional extraction methods. In this paper, the successful applications of and recent developments in microextraction techniques including solvent-based and sorbent-based microextraction methods, in natural product analysis in recent years, especially in the last 5 years, are reviewed for the first time. Their features, advantages, disadvantages, and future development trends are also discussed.
Collapse
Affiliation(s)
- Li-Qing Peng
- College of Pharmaceutical Sciences, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Jun Cao
- College of Pharmaceutical Sciences, Hangzhou Normal University, Hangzhou, 311121, P. R. China.,College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
14
|
Farooq MQ, Abbasi NM, Anderson JL. Deep eutectic solvents in separations: Methods of preparation, polarity, and applications in extractions and capillary electrochromatography. J Chromatogr A 2020; 1633:461613. [DOI: 10.1016/j.chroma.2020.461613] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
|
15
|
Application of Hollow Fibre-Liquid Phase Microextraction Technique for Isolation and Pre-Concentration of Pharmaceuticals in Water. MEMBRANES 2020; 10:membranes10110311. [PMID: 33137884 PMCID: PMC7693864 DOI: 10.3390/membranes10110311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
In this article, a comprehensive review of applications of the hollow fibre-liquid phase microextraction (HF-LPME) for the isolation and pre-concentration of pharmaceuticals in water samples is presented. HF-LPME is simple, affordable, selective, and sensitive with high enrichment factors of up to 27,000-fold reported for pharmaceutical analysis. Both configurations (two- and three-phase extraction systems) of HF-LPME have been applied in the extraction of pharmaceuticals from water, with the three-phase system being more prominent. When compared to most common sample preparation techniques such as solid phase extraction, HF-LPME is a greener analytical chemistry process due to reduced solvent consumption, miniaturization, and the ability to automate. However, the automation comes at an added cost related to instrumental set-up, but a reduced cost is associated with lower reagent consumption as well as shortened overall workload and time. Currently, many researchers are investigating ionic liquids and deep eutectic solvents as environmentally friendly chemicals that could lead to full classification of HF-LPME as a green analytical procedure.
Collapse
|
16
|
Application of solidified floating double-solvent dispersive liquid-phase microextraction for the analysis of the main active components in Zicao Chengqi decoction. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Du KZ, Sun AL, Yan C, Liang C, Qi L, Wang C, Yang R, Cui Y, Shang Y, Li J, Chang YX. Recent advances of green pretreatment techniques for quality control of natural products. Electrophoresis 2020; 41:1469-1481. [PMID: 32524626 DOI: 10.1002/elps.202000084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
A few advancing technologies for natural product analysis have been widely proposed, which focus on decreasing energy consumption and developing an environmentally sustainable manner. These green sample pretreatment and analysis methods following the green Analytical Chemistry (GAC) criteria have the advantage of improving the strategy of chemical analyses, promoting sustainable development to analytical laboratories, and reducing the negative effects of analysis experiments on the environment. A few minimized extraction methodologies have been proposed for replacing the traditional methods in the quality evaluation of natural products, mainly including solid-phase microextraction (SPME) and liquid phase microextraction (LPME). These procedures not only have no need for large numbers of samples and toxic reagent, but also spend a small amount of extraction and analytical time. This overview aims to list out the main green strategies on the application of quality evaluation and control for natural products in the past 3 years.
Collapse
Affiliation(s)
- Kun-Ze Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - A-Li Sun
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Chaozhuo Yan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Chunxiao Liang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Lina Qi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Chenhong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Rui Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yan Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Ye Shang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yan-Xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
18
|
Fang Z, Gong J, Jing X, Wang T, Ye J, Chu Q, Huang D. Zeolitic imidazolate framework-8 reinforced hollow-fiber liquid-phase microextraction of free urinary biomarkers of whole grain intake followed by CE analysis. J Sep Sci 2020; 43:2889-2896. [PMID: 32363807 DOI: 10.1002/jssc.202000120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/09/2020] [Accepted: 04/30/2020] [Indexed: 01/20/2023]
Abstract
The whole grain intake is closely associated with human health. In this work, three-phase dynamic hollow-fiber liquid-phase microextraction reinforced with 0.10 mg/mL 30 nm zeolitic imidazolate framework-8 nanoparticles was introduced for purification and enrichment of free urinary metabolite biomarkers of whole grain intake. Eight milliliters of HCl (pH 3.00) and 8 μL of 300 mM NaOH solutions were used as the donor and acceptor phases, respectively. The temperature and stirring rate were kept at 25℃ and 500 rpm, and the extraction time was 40 min. The extraction process required no further desorption, and the resultant extract was directly used for electrophoretic analysis without derivatization. Based on the synergistic effect of hollow-fiber liquid-phase microextraction and the electrophoretic stacking, the enrichment factors of 3,5-dihydroxybenzoic acid and 3-(3,5-dihydroxyphenyl)-1-propionic acid reached 1018-1034 times, and their limits of detection achieved 0.33-0.67 ng/mL (S/N = 3) in urine matrix. The developed method has been successfully used for urine analysis, and the sample recovery data were in the range of 97.0-103.5%. This developed method provided an attractive alternative for the determination of urinary metabolite biomarkers of whole grain intake due to its sensitive, fast, low-cost, and environmental-friendly features.
Collapse
Affiliation(s)
- Zhonghui Fang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Jiacheng Gong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Xiaofeng Jing
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Tingting Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Jiannong Ye
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Dongping Huang
- Shanghai Putuo District People's Hospital, Shanghai, P. R. China
| |
Collapse
|
19
|
Hu S, Zhang SM, Wang CL, Bi XP, Bai XH. Reverse Micelle Hollow Fiber Liquid-Phase Microextraction Coupled with HPLC for the Determination of Q-Markers of Anthraquinones in Rhubarb and Their Plasma Protein Binding Rates. Chromatographia 2020. [DOI: 10.1007/s10337-020-03888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Zhang SM, Zhang XX, Chen X, Hu S, Bai XH. Deep eutectic solvent-based hollow fiber liquid-phase microextraction for quantification of Q-markers of cinnamic acid derivatives in traditional Chinese medicines and research of their plasma protein binding rates. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Affiliation(s)
- Frederik A. Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
22
|
Chen X, Xin L, Xu Y, Liu J, Li Z, Wang Y, Zhao J. Polymer phase transition characteristics coupled with GC‐MS for the determination of phthalate esters. J Sep Sci 2019; 42:3095-3101. [DOI: 10.1002/jssc.201900410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaomei Chen
- College of Chemistry and Materials ScienceNorthwest University Xi'an P. R. China
| | - Ladi Xin
- College of Chemistry and Materials ScienceNorthwest University Xi'an P. R. China
| | - Yidong Xu
- College of Chemistry and Materials ScienceNorthwest University Xi'an P. R. China
| | - Jie Liu
- College of Chemistry and Materials ScienceNorthwest University Xi'an P. R. China
| | - Zhiqiang Li
- College of Chemistry and Materials ScienceNorthwest University Xi'an P. R. China
| | - Yi Wang
- School of Environmental and Municipal EngineeringXi'an University of Architecture and Technology Xi'an P. R. China
| | - Jingchan Zhao
- College of Chemistry and Materials ScienceNorthwest University Xi'an P. R. China
| |
Collapse
|