1
|
Zeng Y, Peng J, Liu J, Huang X. On-site extraction of phenoxycarboxylic acid herbicides in environmental waters utilizing monolith-based in-tip microextraction technique. J Chromatogr A 2024; 1736:465351. [PMID: 39260149 DOI: 10.1016/j.chroma.2024.465351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
On-site extraction plays a significant role in the reliable quantification of strong polar phenoxycarboxylic acid herbicides (PCAs) in aqueous samples. In current study, a new technique for the field sample preparation of PCAs was developed by means of three channels in-tip microextraction device (TCIM). To capture PCAs effectively, an extraction phase based on monolith (EPM) using vinylimidazole and divinylbenzene/ethylene dimethacrylate as monomer and cross-linkers, respectively, was in-situ synthesized in pipette tips. The EPM fabricated at optimal conditions were characterized by a series of techniques and employed as the adsorbent of TCIM for the on-site extraction of PCAs. The adsorption isotherm was studied so as to inspect the extraction behaviors of EPM towards PCAs. Results revealed that the proposed EPM/TCIM presented satisfactory extraction performance towards PCAs through multiple interactions. The enrichment factors and adsorption capacity were 74-277 and 20 mg g-1, respectively. Under the most beneficial extraction parameters, the developed EPM/TCIM was successfully employed to on-site extract PCAs, and then combining with HPLC equipped with diode array detector to monitor trace PCAs in actual waters. The limits of detection (LODs) towards investigated PCAs varied from 0.071 μg/L to 0.30 μg/L. In addition, the accuracy of established approach was inspected with documented method. Compared with existing lab-based sample preparation approaches, the introduced field sample preparation technique exhibits some merits such as avoidance of transporting large volume of water, prevention of analytes loss during sampling procedure, less usage of organic solvent and achievement of satisfactory efficient in sample preparation.
Collapse
Affiliation(s)
- Yufeng Zeng
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jinghe Peng
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jun Liu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Xiaojia Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| |
Collapse
|
2
|
Nguyen TT, Nguyen TP, Tran LN, Huynh TTT, Nguyen NH, Nguyen LHT, Le TTM, Doan TLH, Nguyen MA, Tran PH. DABCOnium Ionic Liquid‐Immobilized Silica Gel for Solid Phase Extraction of Phenoxyacetic Acid Herbicides in Water Samples**. ChemistrySelect 2022. [DOI: 10.1002/slct.202203526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- The Thai Nguyen
- Department of Organic Chemistry Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Thinh Phuc Nguyen
- Department of Analytical Chemistry Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Long Nam Tran
- Department of Analytical Chemistry Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Tam Thanh Thi Huynh
- Department of Organic Chemistry Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Nhi Hoang Nguyen
- Department of Organic Chemistry Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Linh Ho Thuy Nguyen
- Department of Analytical Chemistry Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City Vietnam
| | - Tien Thi My Le
- Department of Analytical Chemistry Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City Vietnam
| | - Tan Le Hoang Doan
- Department of Analytical Chemistry Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City Vietnam
| | - Mai Anh Nguyen
- Department of Analytical Chemistry Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry Faculty of Chemistry University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
3
|
Mei L, Si T, Wang S, Zhu J, Tang H, Liang X. TiO 2@MOF-919(Fe-Cu) as a sorbent for the extraction of benzoylurea pesticides from irrigation water and fruit juices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3153-3159. [PMID: 35929513 DOI: 10.1039/d2ay00842d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The TiO2@MOF-919(Fe-Cu) solid-phase extraction material was prepared by growing MOF-919(Fe-Cu) in situ on three-dimensional radial TiO2 microspheres by a simple solvothermal method. This combination drew on both the resources of good single dispersion and extraction rate, which made it a better extraction material. It was accompanied with high-performance liquid chromatography (SPE-HPLC) for the separation and determination of four benzoylurea pesticides (triflumuron, chlorbenzuron, teflubenzuron and diflubenzuron) in afforestation irrigation water and juice samples (grape, peach and apple juices). Under the optimal conditions, the linearity of the method ranged from 1 to 400 μg L-1 with a correlation coefficient (R2) ≥ 0.9994, while the detection limit was in the range of 0.40-0.56 μg L-1 for the four pesticides. The adopted material showed good reusability and can be used no less than 10 times. The intra-day and inter-day precision were in the range of 1.78-3.24% and 4.06-5.08%, respectively. The proposed method was then successfully applied for the detection of benzoylurea pesticides in the spiked samples with good recoveries (72.3-108.4%) and good precision (5.15%) due to π-π and hydrophobic interactions between the analytes and adsorbent. The results show that the composite had the potential to be used as a SPE adsorbent for the enrichment and extraction of benzene ring structures containing imide groups in actual samples.
Collapse
Affiliation(s)
- Ling Mei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Si
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jie Zhu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Hao Tang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
- Department of Pharmacy, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
4
|
Rojas S, Rodríguez-Diéguez A, Horcajada P. Metal-Organic Frameworks in Agriculture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16983-17007. [PMID: 35393858 PMCID: PMC9026272 DOI: 10.1021/acsami.2c00615] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Agrochemicals, which are crucial to meet the world food qualitative and quantitative demand, are compounds used to kill pests (insects, fungi, rodents, or unwanted plants). Regrettably, there are some important issues associated with their widespread and extensive use (e.g., contamination, bioaccumulation, and development of pest resistance); thus, a reduced and more controlled use of agrochemicals and thorough detection in food, water, soil, and fields are necessary. In this regard, the development of new functional materials for the efficient application, detection, and removal of agrochemicals is a priority. Metal-organic frameworks (MOFs) with exceptional sorptive, recognition capabilities, and catalytical properties have very recently shown their potential in agriculture. This Review emphasizes the recent advances in the use of MOFs in agriculture through three main views: environmental remediation, controlled agrochemical release, and detection of agrochemicals.
Collapse
Affiliation(s)
- Sara Rojas
- Biochemistry
and Electronics as Sensing Technologies Group, Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio Rodríguez-Diéguez
- Biochemistry
and Electronics as Sensing Technologies Group, Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Patricia Horcajada
- Advanced
Porous Materials Unit (APMU), IMDEA Energy, Av. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
5
|
Metal-organic framework-based core-shell composites for chromatographic stationary phases. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Zhao H, Wang T, Liu D, Yang Q. Recovery of syringic acid from aqueous solution by magnetic Fe–Zn/ZIF and its slow release from the CA-coated carrier based on the 3Rs concept. CrystEngComm 2022. [DOI: 10.1039/d2ce01152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The excessive utilization of syringic acid (SA) has caused severe environmental pollution and economic waste.
Collapse
Affiliation(s)
- Huifang Zhao
- State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Ting Wang
- State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Dahuan Liu
- State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
- College of Chemical Engineering, Qinghai University, Xining 810016, P. R. China
| | - Qingyuan Yang
- State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| |
Collapse
|
7
|
Chen H, Luo S, Huang X. Development of monolith/aminated carbon nanotubes composite-based solid-phase microextraction of phenoxycarboxylic acids herbicides in water and soil samples. J Sep Sci 2021; 44:4284-4294. [PMID: 34598310 DOI: 10.1002/jssc.202100666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
In this study, a new adsorbent based on monolith/aminated carbon nanotubes composite was facilely prepared and employed as the extraction phase of multiple monolithic fibers solid-phase microextraction for the capture of phenoxycarboxylic acids herbicides. The adsorbent was fabricated by mingling aminated carbon nanotubes in the poly (allylthiourea-co-ethylene glycol dimethacrylate) monolith. Various techniques were employed to characterize the morphology, structure, and pore size of the prepared adsorbent. The proposed microextraction method displayed satisfactory capture performance towards studied analytes through multi-interactions such as hydrogen-bonding, hydrophobic and π-π interactions. Under the optimized conditions, a sensitive and reliable method to quantify trace analytes in water and soil samples was developed. The limits of detection were in the ranges of 0.13-0.25 μg/L and 0.20-0.61 μg/kg for water and soil samples, respectively. The practicality of the introduced method was demonstrated by applying it to monitor the contents of studied analytes in environmental water and soil samples. Satisfactory fortified recoveries (76.4-119%) and reproducibility were obtained. The achieved results well demonstrated that the suggested microextraction technique can efficiently extract phenoxycarboxylic acids and the developed method exhibits a promising potential for reliable and sensitive quantification of trace analytes in complex samples.
Collapse
Affiliation(s)
- Hexun Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China.,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China.,Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Siyu Luo
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China.,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China.,Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Xiaojia Huang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China.,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China.,Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| |
Collapse
|
8
|
|
9
|
Yan M, Jia Y, Qi P, Wang Y, Ji Q, Wang M, Wang Q, Hao Y. [Determination of three diphenyl ether herbicides in rice by magnetic solid phase extraction using Fe 3O 4@MOF-808 coupled with high performance liquid chromatography]. Se Pu 2021; 39:316-323. [PMID: 34227312 PMCID: PMC9403814 DOI: 10.3724/sp.j.1123.2020.06007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
利用溶剂热法构筑了Fe3O4@MOF-808吸附剂,将其用于大米中除草醚(NIT)、乙氧氟草醚(OXY)和甲羧除草醚(BIF)3种二苯醚类除草剂的富集,结合高效液相色谱法,建立了大米中该类除草剂的分析方法。研究通过傅里叶变换红外光谱、X射线衍射仪、扫描电子显微镜以及振动样品磁强计对构筑的磁性吸附剂的结构、表面形貌及磁强度进行表征。表征结果显示,球形的Fe3O4纳米颗粒与八面体形貌的MOF-808成功复合,Fe3O4@MOF-808饱和磁化强度可达40.35 emu/g,可以满足磁性固相萃取的需求;对吸附剂用于大米中3种二苯醚类除草剂富集的磁性固相萃取条件(吸附剂用量、吸附时间、洗脱溶剂种类以及洗脱体积)进行了优化。优化结果显示,25 mg吸附剂在6 min内即可达到对目标物的完全吸附,洗脱溶剂采用0.5 mL×2的甲醇。在最优的磁性固相萃取条件下,结合高效液相色谱-紫外检测法,建立了大米中3种二苯醚类除草剂的分析方法。方法在2~300 μg/L范围内线性关系良好(r > 0.998), NIT、OXY、BIF的检出限和定量限依次为0.6、0.6、0.4 μg/kg和2.0、2.0、1.5 μg/kg,在5、10和20 μg/kg 3个加标水平下的回收率为87.3%~96.7%,相对标准偏差不超过10.8%,且富集因子在25~29之间。将所建方法用于大米中NIT、OXY、BIF的分析,各样品均未检出这3种二苯醚类除草剂。该方法具有操作简单、快速、准确的特点,适用于大米样品中除草剂的残留分析。
Collapse
Affiliation(s)
- Meng Yan
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Yeqing Jia
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Peiru Qi
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Yahui Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Qianqian Ji
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Yulan Hao
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
10
|
Su Y, Wang S, Zhang N, Cui P, Gao Y, Bao T. Zr-MOF modified cotton fiber for pipette tip solid-phase extraction of four phenoxy herbicides in complex samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110764. [PMID: 32480162 DOI: 10.1016/j.ecoenv.2020.110764] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 05/19/2023]
Abstract
Phenoxy herbicides are widely applied in agricultural weeding. The determination of herbicides is important in environmental protection, agricultural production, food safety, and public health. In this study, a facile and efficient analytical method was proposed for the trace detection of phenoxy herbicides in soil, cucumber, and tap water samples by coupling pipette tip solid phase extraction (PT-SPE) with high performance liquid chromatography. UiO-66-funtionalized cotton (Cotton@UiO-66) was packed into pipette-tip as sorbent to fabricate extraction device. The modification of UiO-66 on cotton fiber was confirmed using scanning electron microscope, Fourier transform infrared spectroscopy, and X-ray diffraction. The main factors affecting the adsorption of Cotton@UiO-66 for four phenoxy herbicides were evaluated by response surface methodology in detail. Under optimized conditions, Cotton@UiO-66 displayed excellent properties in the extraction of phenoxy herbicides with good peak shape. Linear ranges of 4-chlorophenoxyacetic acid, dicamba, 2,4-dichlorophenoxyacetic acid, and 2-(2,4-dichlorophenoxy) propionic acid were 1.4-72 μg/L, 5.6-280 μg/L, 2.8-140 μg/L and 3.2-160 μg/L (RSDs < 6.3%), respectively. The recoveries were between 83.3 and 106.8% with RSDs <6.7%, with detection limits ranging from 0.1 μg/L to 0.3 μg/L. The results show that Cotton@UiO-66 in PT-SPE is an effective method for monitoring phenoxy herbicides in complex samples.
Collapse
Affiliation(s)
- Ying Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Nan Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Ping Cui
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Yan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Tao Bao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China.
| |
Collapse
|
11
|
Yang H, Li L, Cao H, Zhang Z, Zhao T, Hao Y, Wang M. Silica supported metal organic framework 808 composites as adsorbent for solid-phase extraction of benzodiazepines in urine sample. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Jia Y, Wang Y, Yan M, Wang Q, Xu H, Wang X, Zhou H, Hao Y, Wang M. Fabrication of iron oxide@MOF-808 as a sorbent for magnetic solid phase extraction of benzoylurea insecticides in tea beverages and juice samples. J Chromatogr A 2020; 1615:460766. [DOI: 10.1016/j.chroma.2019.460766] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022]
|
13
|
Nasiri M, Ahmadzadeh H, Amiri A. Sample preparation and extraction methods for pesticides in aquatic environments: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115772] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Guo X, Li Y, Zhang B, Yang L, Di X, Di X. Development of dispersive solid phase extraction based on dissolvable Fe3O4-layered double hydroxide for high-performance liquid chromatographic determination of phenoxy acid herbicides in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104443] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Wu Q, Wu W, Zhan X, Hou X. Three-dimensional chitosan/graphene oxide aerogel for high-efficiency solid-phase extraction of acidic herbicides in vegetables. NEW J CHEM 2020. [DOI: 10.1039/d0nj01960g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A simple, facile method was adopted to synthesize three-dimensional chitosan grafted graphene oxide aerogel modified silica (3D CS/GOA@Sil) as an eco-friendly, sustainable extraction material for the preconcentration of phenoxy acid herbicides.
Collapse
Affiliation(s)
- Qi Wu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- China
| | - Wei Wu
- College of Food Science and Engineering
- Qingdao Agricultural University
- Qingdao
- China
| | - Xue Zhan
- College of Food Science and Engineering
- Qingdao Agricultural University
- Qingdao
- China
| | - Xiudan Hou
- College of Food Science and Engineering
- Qingdao Agricultural University
- Qingdao
- China
| |
Collapse
|