1
|
Li D, Wu A, Liu L, Kuang H, Xu C, Wu X. An immunochromatographic strip sensor for rapid and sensitive detection of candesartan, olmesartan medoxomil, and irbesartan in herbal beverages. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2359-2367. [PMID: 38567492 DOI: 10.1039/d4ay00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Sartans, as a class of antihypertensive drugs, pose a threat to human health when illegally added to herbal beverages. It is crucial to detect sartans in herbal beverages. We have developed a highly sensitive monoclonal antibody against candesartan (CAN), olmesartan medoxomil (OLM), and irbesartan (IRB), with 50% inhibitory concentrations (IC50) that were obtained via indirect enzyme-linked immunosorbent assay (ic-ELISA) as 0.178 ng mL-1, 0.185 ng mL-1, and 0.262 ng mL-1 against CAN, OLM, and IRB, respectively. Based on this monoclonal antibody, we developed a rapid screening method for CAN, OLM, and IRB in herbal beverage samples using an immunochromatographic assay (ICA) strip. Test for 15 minutes after simple and rapid sample pre-treatment and the results of this method can be obtained through naked eye observation. The detection limits (LODs) of the ICA strip for CAN, OLM, and IRB in herbal beverage samples are lower than 0.15 ng mL-1, and the results of the ICA strip and ic-ELISA are consistent in spiked samples and recovery experiments. Therefore, this method can quickly, efficiently, and reliably achieve high-throughput on-site rapid detection of illegally added CAN, OLM, and IRB in herbal beverages.
Collapse
Affiliation(s)
- Dingyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| |
Collapse
|
2
|
Wang C, Chen C, Ma M, Feng Z, Du Y. In‐situ grown metal organic framework synergistic system for the enantioseparation of three drugs in open tubular capillary electrochromatography. J Sep Sci 2022; 45:2708-2716. [DOI: 10.1002/jssc.202100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| | - Mingxuan Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
3
|
Darwish IA, Darwish HW, Bakheit AH, Al-Kahtani HM, Alanazi Z. Irbesartan (a comprehensive profile). PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2020; 46:185-272. [PMID: 33461698 DOI: 10.1016/bs.podrm.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Irbesartan, (2-butyl-3-({4-[2-(2H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)-1,3-diazaspiro[4.4]non-1-en-4-one), is a member of non-peptide angiotensin II receptor antagonists used worldwide in the treatment of hypertension and diabetic nephropathy in hypertensive patients with type 2 diabetes, elevated serum creatinine, and proteinuria. Irbesartan can be used alone or in combination with other antihypertensive agents (e.g., hydrochlorothiazide). These combination products are indicated for hypertension in patients with uncontrolled hypertension with monotherapy or first line in patients not expected to be well controlled with monotherapy. Irbesartan is also indicated for the treatment of diabetic nephropathy in patients with type 2 diabetes and hypertension, an elevated serum creatinine, and proteinuria. Irbesartan exerts its action mainly via a selective blockade action on AT1 receptors and the consequent reduced pressor effect of angiotensin II. This article discusses, by a critical comprehensive review of the literature on irbesartan in terms of its description, names, formulae, elemental composition, appearance, and therapeutic uses. The article also discusses the methods for preparation of irbesartan, its physical-chemical properties, analytical methods for its determination, pharmacological-toxicological properties, and dosing information.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia; Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Hamad M Al-Kahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Zahi Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Jabłońska J, Kluska M, Erchak N. The challenge of separating and determining biologically active electrostatically stabilized silanates using the high-performance liquid chromatography technique. J Sep Sci 2020; 43:3399-3407. [PMID: 32567759 DOI: 10.1002/jssc.202000453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022]
Abstract
We present the results of research on the optimal conditions for the separation and determination of newly obtained hypercoordinated compounds, which belong to the group of electrostatically stabilized silanates. The research involved five stationary and four mobile phases. The best selectivity was obtained using the graphite phase and the mobile phase consisting of acetonitrile/water (80/20). The maximum selectivity of the determined electrostatically stabilized silanates was 1.13 and 1.06 for (1), (2), (3); 1.10 and 1.15 for (4), (5), (6); and 1.12 and 1.15 for (7), (8), (9). The octadecyl phase (which is recommended as standard) did not yield satisfactory results.
Collapse
Affiliation(s)
- Joanna Jabłońska
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Mariusz Kluska
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | | |
Collapse
|