1
|
Dong L, Wu J, Zhu X. Preparation of amino acid chiral ionic liquid and visual chiral recognition of glutamine and phenylalanine enantiomers. Chirality 2024; 36:e23665. [PMID: 38570326 DOI: 10.1002/chir.23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
In this paper, the amino acid chiral ionic liquid (AACIL) was prepared with L-phenylalanine and imidazole. It was characterized by CD, FT-IR, 1H NMR, and 13C NMR spectrum. The chiral recognition sensor was constructed with AACIL and Cu(II), which exhibited different chiral visual responses (solubility or color difference) to the enantiomers of glutamine (Gln) and phenylalanine (Phe). The effects of solvent, pH, time, temperature, metal ions, and other amino acids on visual chiral recognition were optimized. The minimum concentrations of Gln and Phe for visual chiral recognition were 0.20 mg/ml and 0.28 mg/ml, respectively. The mechanism of chiral recognition was investigated by FT-IR, TEM, SEM, TG, XPS, and CD. The location of the host-guest inclusion or molecular placement has been conformationally searched based on Gaussian 09 software.
Collapse
Affiliation(s)
- Luzheng Dong
- College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
| | - Jun Wu
- College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Gambhir D, Kumar K, Murugesan P, Yadav A, Sinha Ray S, Koner RR. Amino Acid-Based Molecular and Membranous Chiral Tools for Enantiomeric Recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2745-2753. [PMID: 38279959 DOI: 10.1021/acs.langmuir.3c03396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Given the need, both academic and industrial, for new approaches and technologies for chiral discrimination of enantiomers, the present work demonstrates the development through rational design and integration of two new chiral platforms (molecular and membranous) for enantioselective recognition through visual as well as microscopic observation. The molecular platform (TPT) is based on the tryptophan derivative developed through the condensation of two tryptophan units with terepthaloyl chloride. While TPT based on l-tryptophan recognizes R-mandelic acid over the S-isomer, the host with reverse chirality (TPDT) recognizes S-mandelic acid over R-isomer. The role of chemical functionality in this sensitive recognition process was established experimentally by developing an analogue of TPT and by judiciously using different chiral analytes. Importantly, a detailed theoretical study at the molecular level revealed the U-shaped conformation of TPT, creating a cavity for accommodating a chiral guest with selective functional interaction resulting in the discrimination of enantiomers. Finally, a chiral polymeric mat of poly(methyl methacrylate) (PMMA)/polyacrylonitrile (PAN) (2:3) impregnated with TPT was developed via electrospinning. The resulting fibrous mat was successfully utilized for chiral recognition through microscopic and architectural observation. Hence, the present work reports simple chiral tools for enantiomeric recognition.
Collapse
Affiliation(s)
- Diksha Gambhir
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| | - Krishan Kumar
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| | - Premkumar Murugesan
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| | - Arti Yadav
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| | - Sumit Sinha Ray
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Rik Rani Koner
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| |
Collapse
|
3
|
Li M, Zhang L, Wu B, Hong M. High-Enantioselectivity Adsorption Separation of Racemic Mandelic Acid and Methyl Mandelate by Robust Chiral UiO-68-Type Zr-MOFs. Inorg Chem 2024; 63:381-389. [PMID: 38150656 DOI: 10.1021/acs.inorgchem.3c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Mandelic acid and its analogues are highly valuable medical intermediates and play an important role in the pharmaceutical industry, biochemistry, and life sciences. Therefore, effective enantioselective recognition and separation of mandelic acid are of great significance. In this study, two of our recently reported chiral amine-alcohol-functionalized UiO-68-type Zr-HMOFs 1 and 3 with high chemical stability, abundant binding sites, and large chiral pores were selected as chiral selectors for the enantioselective separation of mandelic acid (MA), methyl mandelate (MM), and other chiral molecules containing only one phenyl. Materials 1 and 3 exhibited excellent enantioselective separation performance for MA and MM. Especially for the separation of racemate MA, the enantiomeric excess values reached 97.3 and 98.9%, which are the highest reported values so far. Experimental and density functional theory (DFT) computational results demonstrated that the introduction of additional phenyls on the chiral amine alcohol pendants in 3 had somewhat impact on the enantioselective adsorption and separation of MA or MM compared with 1, but it was not significant. Further research on the enantioselective separation of those chiral adsorbates containing only one phenyl by material 1 indicated the crucial role of the groups directly bonded to the chiral carbons of the adsorbates in the selective separation of enantiomers, especially showing higher enantioselectivity for the adsorbates with two hydrogen-bonding groups directly bonded to its chiral carbon.
Collapse
Affiliation(s)
- Mengna Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lei Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Benlai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of the Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| |
Collapse
|
4
|
Wang H, Wu F, Dai X, Fang X, Ding CF. Rapid discrimination of enantiomers by ion mobility mass spectrometry and chemical theoretical calculation: Chiral mandelic acid and its derivatives. Anal Chim Acta 2023; 1239:340725. [PMID: 36628725 DOI: 10.1016/j.aca.2022.340725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Because R/S-mandelic acids (MA) and their derivatives are critical starting materials or intermediates in the synthesis of chiral drugs, their chirality discrimination is important. In this study, R/S-MA and its derivatives, including R/S-2-phenylpropionic acid (2-PPA), R/S-methoxyphenylaceticacid (MPA), and R/S-2-hydroxy-4-phenylbutyric acid (HPBA), were accurate simultaneous mobility-discriminated by forming diastereomer complexes for the first time, which were obtained by simply mixing with cyclodextrins (α, β, γ-CD) and transition-metal ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+). The mass spectra revealed non-covalent diastereomer complexes formed by CD, enantiomers, and metal ions, and ion-mobility spectrometry (IMS) was performed for 109 pairs of complexes. Significant chiral discrimination was observed in the formed diastereomeric complexes, and their separation peak-to-peak resolution (Rp-p) for the enantiomers depended on the transition metal ion type. In most cases, the Rp-p value gradually increases with CD size, with quaternary complexes having the largest Rp-p value. The greatest chiral distinctions of 2-PPA, MA, MPA, and HPBA were obtained by the diastereomeric complex ions of [(2-PPA)(α)2+Zn2+-H]+, [(MA)(α)2+Zn2+-H]+, [(MPA)2(β)+Co2+-H]+, and [(HPBA)(α)2+Fe2+-H]+, with Rp-p values of 1.35, 1.57, 1.70, and 0.71, respectively. Furthermore, the favorable conformation and collisional cross section (CCS) value of the different [CD + R/S-MA + Cu-H]+ complexes were measured using chemical theoretical calculations to detail their intermolecular interaction, revealing that [α-CD + R/S-MA + Cu-H]+ has two favored gas complexes, and the CCS calculated were consistent with the TIMS observed. In addition, R2 > 0.99 was obtained for the relative quantification of the chiral enantiomers. Overall, the proposed method provides a promising strategy for distinguishing the enantiomers of MA and their derivatives, with the advantages of simplicity, speed, and accuracy, without the need for complex chemical derivatization or chromatographic separation.
Collapse
Affiliation(s)
- Huanhuan Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fangling Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Xinhua Dai
- National Institute of Metrology, Beijing, 100084, China
| | - Xiang Fang
- National Institute of Metrology, Beijing, 100084, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
5
|
Chiral ionic liquids synthesis and their applications in racemic drug separation and analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Quintas PY, Fiorentini EF, Llaver M, González RE, Wuilloud RG. State-of-the-art extraction and separation of enantiomers through the application of alternative solvents. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Fejős I, Tóth G, Várnai B, Szabó ZI, Köteles I, Malanga M, Béni S. Enantioseparation of solriamfetol and its major impurity phenylalaninol by capillary electrophoresis using sulfated gamma cyclodextrin. Electrophoresis 2021; 42:1818-1825. [PMID: 34109644 DOI: 10.1002/elps.202100076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/11/2022]
Abstract
R-solriamfetol is a recently approved drug used for the treatment of excessive sleepiness associated with narcolepsy and sleep apnea. Herein, a capillary electrophoretic method was developed, enabling the simultaneous analysis of the API and its S-enantiomer in addition to the enantiomers of its major impurity phenylalaninol. Twenty-nine different cyclodextrins (CDs), including native, neutral, and charged ones were screened as potential chiral selectors, and the best results were obtained with sulfated CDs. Randomly sulfated-β-CD exhibited outstanding enantioresolution, the peaks of phenylalaninol enantiomers inserted between the two peaks of solriamfetol enantiomers, while sulfated-γ-CD (S-γ-CD) showed remarkable resolution values in a much shorter analysis time with the optimal enantiomer migration order. Among the single isomer sulfated CD derivatives, substituent dependent enantiomer migration order reversal could also be observed in the case of heptakis(6-O-sulfo)-β-CD (HS-β-CD) or heptakis(2,3-O-dimethyl-6-O-sulfo)-β-CD (HDMS-β-CD) with R-,S-solriamfetol, and heptakis(2,3-O-diacetyl-6-O-sulfo)-β-CD (HDAS-β-CD) resulting S-,R-solriamfetol migration order. The sulfated-γ-CD system was chosen for method optimization applying orthogonal experimental design. The optimized method (45 mM Tris-acetate buffer, pH 4.5, 4 mM S-γ-CD, 21°C, +19.5 kV) was capable for the baseline separation of solriamfetol and phenylalaninol enantiomers within 7 min. The optimized method was validated according to the ICH guidelines and successfully applied for the analysis of pharmaceutical preparation (Sunosi® 75 mg tablet), thus it may serve as a routine procedure for the laboratories of regulatory authorities as well as in Pharmacopoeias.
Collapse
Affiliation(s)
- Ida Fejős
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Bianka Várnai
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - Zoltán István Szabó
- Department of Pharmaceutical Industry and Management, George Emil Palad University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - István Köteles
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Milo Malanga
- CycloLab, Cyclodextrin R&D Ltd, Budapest, Hungary
| | - Szabolcs Béni
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Wu F, Gu L, Dai X, Yang S, Xu F, Fang X, Yu S, Ding CF. Direct and simultaneous recognition of the positional isomers of aminobenzenesulfonic acid by TIMS-TOF-MS. Talanta 2021; 226:122085. [PMID: 33676646 DOI: 10.1016/j.talanta.2021.122085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
Positional isomer recognition is a challenging scientific issue. Fast and accurate detection of isomers is required for understanding their chemical properties. Here, we describe a method for simultaneous recognition of three positional isomers of 2-aminobenzenesulfonic acid (2-ABSA), 3-ABSA, and 4-ABSA using trapped ion mobility spectroscopy-time-of-flight mass spectrometry (TIMS-TOF-MS). The three ABSA positional isomers were recognized by measuring the different ion mobility of the ternary complexes of [β-cyclodextrin (CD)+ABSA + Li]+ or [λ-CD + ABSA + Na]+, because their different collision cross-sections or different spatial conformations. The collision-induced dissociation mechanism of the different complexes of [β-CD + ABSA + Li]+ and [λ-CD + ABSA + Na]+ using tandem mass spectrometry exhibited the same dissociation process with slightly different dissociation energies, which the smaller cross-section requires higher collision energy that means the smaller complex with tighter and more stable conformation than a larger complex for the ABSA complexes. In addition, relative quantification of the ABSA isomers was studied by measuring any two of the three ABSA isomer complexes at different molar ratio of 10:1 to 1:10 in the μM range, good linearity (R2 > 0.99) with precision between 2.14% and 2.58%, and accuracy ≥ 97.1% were obtained. The method for fast determination and recognition of ABSA positional isomers by combination with CD and alkali metal ions possesses the advantages of being simple, direct, rapid, sensitive, cost-effective, and needs no chemical derivatives or chromatographic separation before analysis. Therefore, the proposed method would be a powerful tool for the analysis of ABSA isomers or even other positional isomers.
Collapse
Affiliation(s)
- Fangling Wu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Liancheng Gu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinhua Dai
- National Institute of Metrology, Beijing, 100084, China
| | - Shutong Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fuxing Xu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xiang Fang
- National Institute of Metrology, Beijing, 100084, China.
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
9
|
Separation of mandelic acid enantiomers using solid-liquid biphasic systems with chiral ionic liquids. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Nie L, Yohannes A, Yao S. Recent advances in the enantioseparation promoted by ionic liquids and their resolution mechanisms. J Chromatogr A 2020; 1626:461384. [PMID: 32797857 DOI: 10.1016/j.chroma.2020.461384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022]
Abstract
More and more various chemical media are being applied in enantioseparation; among them, ionic liquids (ILs) have attracted the long-term attention in this decade as green designable solvents. This paper provides comprehensive overview for the applications of ILs in chiral extraction, gas chromatography, liquid chromatography, capillary electrophoresis and other techniques for enantioseparation. Additionally, the important resolution mechanisms based on ILs have also been summarized and discussed. This review focuses on the latest development of enantioseparation methods by using ILs in various modes, leading to meaningful and valuable information to related fields and thus promotes further research and application of reported methods.
Collapse
Affiliation(s)
- Lirong Nie
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Alula Yohannes
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China.
| |
Collapse
|
11
|
Ma X, Du Y, Zhu X, Yang J. Visual chiral recognition of aromatic amino acids with (S)-mandelic acid-based ionic liquids via complexation. Talanta 2020; 217:121083. [PMID: 32498868 DOI: 10.1016/j.talanta.2020.121083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023]
Abstract
Recently, chiral ionic liquids have attracted increasing attention in analytical chemistry. However, only a few papers focus on the application of them in visual chiral recognition. Herein, two functionalized chiral ionic liquids derived from (S)-mandelic acid (1-butyl-3-methylimidazolium mandelate, CIL1 and N-butyl-N-methylpyrrolidinium mandelate, CIL2) were prepared for visual chiral recognition of aromatic amino acids for the first time. In the presence of Cu(II) and appropriate solvents, visual enantiomeric responses of phenylalanine, tryptophane, tyrosine and phenylglycine were observed. Relying on solubility or color differences, all chiral recognition could be finished within 5 min. The potential mechanism was investigated by means of infrared spectroscopy, ultraviolet spectroscopy, thermal gravity analysis, elemental analysis and scanning electron microscope. Results revealed that CuSO4 interacted with CIL1 and D-tryptophane in the ratio of 1:1.96:0.43 in relevant precipitate, and the different stability of complex was responsible for the chiral recognition. In addition, resolution of racemic tryptophane was performed, which offered excellent enantiomeric excess values (94.2% for CIL1 and 95.1% for CIL2 in solid phase). The proposed ionic liquids had strong enantioselectivity for aromatic amino acids and great potential in visual chiral recognition.
Collapse
Affiliation(s)
- Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Xinqi Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jiangxia Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| |
Collapse
|