1
|
Gao J, Xiang X, Yan Q, Ding Y. CDCS-TCM: A framework based on complex network theory to analyze the causality and dynamic correlation of substances in the metabolic process of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118100. [PMID: 38537843 DOI: 10.1016/j.jep.2024.118100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine, with the feature of synergistic effects of multi-component, multi-pathway and multi-target, plays an important role in the treatment of cancer, cardiovascular and cerebrovascular diseases, etc. However, chemical components in traditional Chinese medicine are complex and most of the pharmacological mechanisms remain unclear, especially the relationships of chemical components change during the metabolic process. AIM OF STUDY Our aim is to provide a method based on complex network theory to analyze the causality and dynamic correlation of substances in the metabolic process of traditional Chinese medicine. MATERIALS AND METHODS We proposed a framework named CDCS-TCM to analyze the causality and dynamic correlation between substances in the metabolic process of traditional Chinese medicine. Our method mainly consists two parts. The first part is to discover the local and global causality by the causality network. The second part is to investigate the dynamic correlations and identify the essential substance by dynamic substance correlation network. RESULTS We developed a CDCS-TCM method to analyze the causality and dynamic correlation of substances. Using the XiangDan Injection for ischemic stroke as an example, we have identified the important substances in the metabolic process including substance pairs with strong causality and the dynamic changes of the core effector substance clusters. CONCLUSION The proposed framework will be useful for exploring the correlations of active ingredients in traditional Chinese medicine more effectively and will provide a new perspective for the elucidation of drug action mechanisms and the new drug discovery.
Collapse
Affiliation(s)
- Jiaxuan Gao
- School of Science, Jiangnan University, Wuxi, Jiangsu, PR China.
| | - Xiaoyang Xiang
- School of Science, Jiangnan University, Wuxi, Jiangsu, PR China.
| | - Qunfang Yan
- School of Science, Jiangnan University, Wuxi, Jiangsu, PR China.
| | - Yanrui Ding
- School of Science, Jiangnan University, Wuxi, Jiangsu, PR China.
| |
Collapse
|
2
|
Chen Y, Yang Y, Pan Y, Liu X, Zhang H, Pan Y, Yan J, Zhang H. Detection of trace components in Xiangdan injection of Dalbergia odorifera based on microextraction and back-extraction along with bar-form-diagram strategy. J Chromatogr A 2024; 1722:464852. [PMID: 38581974 DOI: 10.1016/j.chroma.2024.464852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Xiangdan Injection are commonly used traditional Chinese medicine formulations for the clinical treatment of cardiovascular diseases. However, the trace components of Dalbergia odorifera in Xiangdan Injection pose a challenge for evaluating its quality due to the difficulty of detection. This study proposes a technology combining dispersive liquid-liquid microextraction and back-extraction (DLLME-BE) along with Bar-Form-Diagram (BFD) to address this issue. The proposed combination method involves vortex-mixing tetradecane, which has a lower density than water, with the sample solution to facilitate the transfer of the target components. Subsequently, a new vortex-assisted liquid-liquid extraction step is performed to enrich the components of Dalbergia odorifera in acetonitrile. The sample analysis was performed on HPLC-DAD, and a clear overview of the chemical composition was obtained by integrating spectral and chromatographic information using BFD. The combination of BFD and CRITIC-TOPSIS strategies was used to optimize the process parameters of DLLME-BE. The determined optimal sample pre-treatment process parameters were as follows: 200 μL extraction solvent, 60 s extraction time, 50 μL back-extraction solvent, and 90 s back-extraction time. Based on the above strategy, a total of 29 trace components, including trans-nerolidol, were detected in the Xiangdan Injection. This combination technology provides valuable guidance for the enrichment analysis of trace components in traditional Chinese medicines.
Collapse
Affiliation(s)
- Yuan Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou 310014, China
| | - Yanqi Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou 310014, China
| | - Yingfeng Pan
- Zhejiang Advanced Manufacturing Engineering Research Center of Traditional Chinese Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou 310030, China
| | - Xiaoyi Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou 310014, China
| | - Hongxu Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou 310014, China
| | - Yixia Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou 310014, China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou 310014, China.
| | - Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou 310014, China.
| |
Collapse
|
3
|
Wu L, Fan Z, Gu L, Liu J, Cui Z, Yu B, Kou J, Li F. QiShenYiQi dripping pill alleviates myocardial ischemia-induced ferroptosis via improving mitochondrial dynamical homeostasis and biogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116282. [PMID: 36806343 DOI: 10.1016/j.jep.2023.116282] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE QiShenYiQi is a Chinese herbal formula composed of Astragalus membranaceus Fisch. ex Bunge, root; Slauia miltiorrhiza Bunge, root and rhizome; Panax notoginseng (Burkill) F.H.Chen, root; and Dalbergia odorifera T.C.Chen, heartwood of trunk and root with a proportion of 10:5:1:0.067. Its dripping pills were approved by the National Medical Products Administration (NMPA) in 2003 and could be used in the clinical treatment of ischemic heart diseases. Ferroptosis is an important pathological mechanism in the process of myocardial ischemia (MI). Whether QSYQ can improve ferroptosis induced by myocardial ischemia is still unclear. AIM OF THE STUDY In this study, the potential mechanisms of QSYQ against ferroptosis in MI-induced injury were investigated. MATERIALS AND METHODS The main components of QSYQ were analyzed by HPLC-Q-TOF-MS/MS. MI model was established by ligation of the left anterior descending coronary artery and then treated with QSYQ dropping pills for 14 days. The cardiac function of mice was evaluated by echocardiography. Hematoxylin and eosin (H&E) staining and Masson's trichrome staining were used to detect the pathological changes in heart tissue. Serum biochemical indexes were analyzed by biochemical kit. Transmission electron microscope (TEM) was used to observe the mitochondria ultrastructure and mitochondrial ROS was detected by immunofluorescence. Then, photoacoustic imaging was used to observe the redox status of the mice' hearts. Finally, the mitochondrial dynamics and biogenesis related proteins and the proteins of ferroptosis were analyzed by western blotting. RT-PCR was used to detect the mRNA expression changes of ferroptosis. RESULTS A total of 20 principal components of QSYQ were characterized by HPLC-Q-TOF-MS/MS. QSYQ significantly improved cardiac function and myocardial injury in MI mice. Furthermore, the lipid peroxidation change levels (MDA, 4-HNE, and GSH) in serum were attenuated and myocardial iron content was reduced after QSYQ treatment. On this basis, QSYQ also improved the expression changes of ferroptosis related mRNA and proteins. In addition, QSYQ promoted mitochondrial biogenesis (PGC-1α, Nrf1, and TFAM) and mitochondrial fusion (MFN-2 and OPA1) and inhibited mitochondrial excessive fission (Phosphorylation of Drp1 at ser616) in vitro and in vivo, indicating that the cardioprotection of QSYQ might be related to promoting mitochondrial biogenesis and dynamic homeostasis. CONCLUSION In summary, QSYQ could alleviate MI-induced ferroptosis by improving mitochondrial biogenesis and dynamic homeostasis.
Collapse
Affiliation(s)
- Lingling Wu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zhaoyang Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lifei Gu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China.
| | - Jincheng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zekun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
4
|
Wang W, Sun G, Nan X, Huang Y, Li Z, He T, Luo Y, Chen S. On-line screening and verification of haptens in Xiangdan injection combining chemical analysis with activity detection. J Pharm Biomed Anal 2023; 231:115413. [PMID: 37119721 DOI: 10.1016/j.jpba.2023.115413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Xiangdan injection (XDI), as a well-known traditional Chinese medicine injection, is of great significance to treat cardiovascular and cerebrovascular diseases. The haptens causing allergic reactions are urged to be detected due to the adverse reaction. In this study, an efficient approach was established to rapidly identify and screen potential haptens in XDI for the first time by combining high performance liquid chromatography-diode array detector-electrospray ionization-ion trap-time of flight-mass spectrometry with human serum albumin-fluorescence detector (HPLC-DAD-ESI-IT-TOF-MS-HSA-FLD). 21 compounds were identified according to their mass spectrum or comparison with reference substances and 8 salvianolic acids in XDI showed interactions with HSA in varying degrees. After that, surface plasmon resonance (SPR) was applied to screen the compounds showing specific affinity with human serum albumin (HSA). Subsequently, active systemic anaphylaxis (ASA) in guinea pigs was carried out to verify the sensitization of active compounds, In the meantime the serum IgE level before and after challenge was measured by the enzyme-linked immunosorbent assay (ELISA). Ultimately, it was tested that salvianolic acid C had a strong sensitization, in addition, lithospermic acid, rosmarinic acid and salvianolic acid B had potential sensitization. This study suggest that the on-line method provides rapid preliminary searching for haptens in XDI, combined with SPR and ASA, offering an efficient, rapid and comprehensive approach to screen haptens.
Collapse
Affiliation(s)
- Wanwan Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Ge Sun
- China Institute of Radiation Protection, Taiyuan 030006, PR China
| | - Xiaoke Nan
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yazhuo Huang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhehao Li
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Tian He
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yukun Luo
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Shizhong Chen
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
5
|
Renoprotective Effects of Tanshinone IIA: A Literature Review. Molecules 2023; 28:molecules28041990. [PMID: 36838978 PMCID: PMC9964040 DOI: 10.3390/molecules28041990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The kidney is an important organ in the human body, with functions such as urine production, the excretion of metabolic waste, the regulation of water, electrolyte and acid-base balance and endocrine release. The morbidity and mortality of kidney diseases are increasing year by year worldwide, and they have become a serious public health problem. In recent years, natural products derived from fungi, plants and animals have become an important alternative source of treatment for kidney diseases because of their multiple pathways, multiple targets, safety, low toxicity and few side effects. Tanshinone IIA (Tan IIA) is a lipid-soluble diterpene quinone isolated from the Chinese herb Salvia miltiorrhiza, considered as a common drug for the treatment of cardiovascular diseases. As researchers around the world continue to explore its unknown biological activities, it has also been found to have a wide range of biological effects, such as anti-cancer, anti-oxidative stress, anti-inflammatory, anti-fibrotic, and hepatoprotective effects, among others. In recent years, many studies have elaborated on its renoprotective effects in various renal diseases, including diabetic nephropathy (DN), renal fibrosis (RF), uric acid nephropathy (UAN), renal cell carcinoma (RCC) and drug-induced kidney injury caused by cisplatin, vancomycin and acetaminophen (APAP). These effects imply that Tan IIA may be a promising drug to use against renal diseases. This article provides a comprehensive review of the pharmacological mechanisms of Tan IIA in the treatment of various renal diseases, and it provides some references for further research and clinical application of Tan IIA in renal diseases.
Collapse
|
6
|
Zhao Y, Yuan L, Bai XL, Jiang XX, Zhang Y, Fang Q, Zhang Q, Liao X. Tyrosinase covalently immobilized on carboxyl functionalized magnetic nanoparticles for fishing of the enzyme's ligands from Prunellae Spica. J Sep Sci 2022; 45:3635-3645. [PMID: 35852941 DOI: 10.1002/jssc.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022]
Abstract
In this study, tyrosinase was immobilized on carboxyl functionalized silica-coated magnetic nanoparticles for the first time to be used for fishing of tyrosinase's ligands present in complex plant extract. The immobilized tyrosinase was characterized by transmission electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy, thermo-gravimetric analyzer, and atomic force microscopy. The reusability and thermostability of the immobilized tyrosinase were found significantly superior to its free counterpart. Two tyrosinase's ligands, that is, caffeic acid (1) and rosmarinic acid (2), were fished out from extract of the traditional Chinese medicine Prunellae Spica by the immobilized tyrosinase. Compound 1 was found to be an activator of the enzyme with the half maximal effective concentration value of 0.27 ± 0.06 mM, while compound 2 was an inhibitor with the half maximal inhibitory concentration value of 0.14 ± 0.03 mM. Taking advantage of the convenience of magnetic separation and specific extraction ability of ligand fishing, the proposed method exhibited great potential for screening of bioactive compounds from complex matrices.
Collapse
Affiliation(s)
- Yan Zhao
- School of Science, Xihua University, Chengdu, P. R. China
| | - Li Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xin-Xin Jiang
- School of Science, Xihua University, Chengdu, P. R. China
| | - Yi Zhang
- School of Science, Xihua University, Chengdu, P. R. China
| | - Qiong Fang
- School of Science, Xihua University, Chengdu, P. R. China
| | - Qin Zhang
- School of Science, Xihua University, Chengdu, P. R. China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| |
Collapse
|
7
|
Nijat D, Xu L, Kuang Y, Yu R, Zhang Y, Hasan A, Su H, Qiao X, Yang Y, Ye M. A pharmacokinetic-pharmacodynamic study to elucidate the cardiovascular protective constituents in Danhong Injection. J Pharm Biomed Anal 2022; 219:114953. [PMID: 35901531 DOI: 10.1016/j.jpba.2022.114953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 10/17/2022]
Abstract
Danhong Injection (DHI) is one of the most popular Chinese medicine formulations to treat cardiovascular diseases. However, the effective components of DHI have not been well addressed. In the present study, a pharmacokinetics-pharmacodynamics (PK-PD) approach was employed to elucidate the effective compounds of DHI for the first time. Firstly, the cardiovascular protective effect of DHI was demonstrated on an adrenaline-induced acute blood stasis rat model by echocardiography and histopathology. Secondly, the levels of four blood stasis-related cytokines in plasma were examined by ELISA. Thirdly, the plasma concentrations of 10 compounds in DHI were determined using UHPLC-Q-Orbitrap-MS. Finally, PK-PD profiles were established to describe the relationship between compound concentrations and cytokine levels in plasma at 0-12 h following DHI administration. The results showed that DHI attenuated cardiovascular injury and regulated IL-2, cTnT, VEGF, and VEGFR-1. Except for the endogenous metabolites cytidine and uridine, danshensu, rosmarinic acid, and salvianolic acid B exhibited the highest plasma exposure. PK-PD correlation analysis indicated that concentrations of salvianolic acid A, caffeic acid, and ferulic acid were negatively correlated with the level of cTnT, while the concentration of salvianolic acid A was negatively correlated with the level of IL-2. These compounds may contribute to the cardiovascular protective effect of DHI.
Collapse
Affiliation(s)
- Dilaram Nijat
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lulu Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Rong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Aobulikasimu Hasan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Huifei Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China
| | - Yanfang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
8
|
Liu J, Shi Y, Peng D, Wang L, Yu N, Wang G, Chen W. Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Front Cardiovasc Med 2022; 9:842980. [PMID: 35528835 PMCID: PMC9072665 DOI: 10.3389/fcvm.2022.842980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rapidly prevalent due to its strong association with increased metabolic syndrome such as cardio- and cerebrovascular disorders and diabetes. Few drugs can meet the growing disease burden of NAFLD. Salvia miltiorrhiza Bge. (Danshen) have been used for over 2,000 years in clinical trials to treat NAFLD and metabolic syndrome disease without clarified defined mechanisms. Metabolic targets restored metabolic homeostasis in patients with NAFLD and improved steatosis by reducing the delivery of metabolic substrates to liver as a promising way. Here we systematic review evidence showing that Danshen against NAFLD through diverse and crossing mechanisms based on metabolic targets. A synopsis of the phytochemistry and pharmacokinetic of Danshen and the mechanisms of metabolic targets regulating the progression of NAFLD is initially provided, followed by the pharmacological activity of Danshen in the management NAFLD. And then, the possible mechanisms of Danshen in the management of NAFLD based on metabolic targets are elucidated. Specifically, the metabolic targets c-Jun N-terminal kinases (JNK), sterol regulatory element-binding protein-1c (SREBP-1c), nuclear translocation carbohydrate response element–binding protein (ChREBP) related with lipid metabolism pathway, and peroxisome proliferator-activated receptors (PPARs), cytochrome P450 (CYP) and the others associated with pleiotropic metabolism will be discussed. Finally, providing a critical assessment of the preclinic and clinic model and the molecular mechanism in NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- *Correspondence: Lei Wang,
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- Weidong Chen,
| |
Collapse
|
9
|
Zhang S, Gai Z, Gui T, Chen J, Chen Q, Li Y. Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6139308. [PMID: 34790246 PMCID: PMC8592717 DOI: 10.1155/2021/6139308] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Phenolic compounds are naturally present as secondary metabolites in plant-based sources such as fruits, vegetables, and spices. They have received considerable attention for their antioxidant, anti-inflammatory, and anti-carcinogenic properties for protection against many chronic disorders such as neurodegenerative diseases, diabetes, cardiovascular diseases, and cancer. They are categorized into various groups based on their chemical structure and include phenolic acids, flavonoids, curcumins, tannins, and quinolones. Their structural variations contribute to their specific beneficial effects on human health. The antioxidant property of phenolic compounds protects against oxidative stress by up-regulation of endogenous antioxidants, scavenging free radicals, and anti-apoptotic activity. Protocatechuic acid (PCA; 3,4-dihydroxy benzoic acid) and protocatechuic aldehyde (PAL; 3,4-dihydroxybenzaldehyde) are naturally occurring polyphenols found in vegetables, fruits, and herbs. PCA and PAL are the primary metabolites of anthocyanins and proanthocyanidins, which have been shown to possess pharmacological actions including antioxidant activity in vitro and in vivo. This review aims to explore the therapeutic potential of PCA and PAL by comprehensively summarizing their pharmacological properties reported to date, with an emphasis on their mechanisms of action and biological properties.
Collapse
Affiliation(s)
- Shijun Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Juanli Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Qingfa Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
10
|
Zhong C, Lin Z, Ke L, Shi P, Li S, Huang L, Lin X, Yao H. Recent Research Progress (2015-2021) and Perspectives on the Pharmacological Effects and Mechanisms of Tanshinone IIA. Front Pharmacol 2021; 12:778847. [PMID: 34819867 PMCID: PMC8606659 DOI: 10.3389/fphar.2021.778847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is an important characteristic component and active ingredient in Salvia miltiorrhiza, and its various aspects of research are constantly being updated to explore its potential application. In this paper, we review the recent progress on pharmacological activities and the therapeutic mechanisms of Tan IIA according to literature during the years 2015-2021. Tan IIA shows multiple pharmacological effects, including anticarcinogenic, cardiovascular, nervous, respiratory, urinary, digestive, and motor systems activities. Tan IIA modulates multi-targets referring to Nrf2, AMPK, GSK-3β, EGFR, CD36, HO-1, NOX4, Beclin-1, TLR4, TNF-α, STAT3, Caspase-3, and bcl-2 proteins and multi-pathways including NF-κB, SIRT1/PGC1α, MAPK, SREBP-2/Pcsk9, Wnt, PI3K/Akt/mTOR pathways, TGF-β/Smad and Hippo/YAP pathways, etc., which directly or indirectly influence disease course. Further, with the reported targets, the potential effects and possible mechanisms of Tan IIA against diseases were predicted by bioinformatic analysis. This paper provides new insights into the therapeutic effects and mechanisms of Tan IIA against diseases.
Collapse
Affiliation(s)
- Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zuan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Simultaneous Determination of Seven Bioactive Constituents from Salvia miltiorrhiza in Rat Plasma by HPLC-MS/MS: Application to a Comparative Pharmacokinetic Study. SEPARATIONS 2021. [DOI: 10.3390/separations8070093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The roots of Salvia miltiorrhiza (Danshen) is a precious herbal medicine used to treat cardiovascular diseases. This study establishes a high-performance liquid chromatography-tandem mass spectrometric (HPLC-MS/MS) method to quantify seven bioactive constituents from Danshen in rat plasma simultaneously. Chromatographic separation is performed on an Agilent Eclipse Plus C18 column (150 mm × 2.1 mm, 5 μm), utilizing a gradient of acetonitrile and 0.2% formic acid aqueous solution as the mobile phase, at a flow rate of 0.6 mL/min. We conduct a tandem mass spectrometric detection with electrospray ionization (ESI) interface via multiple reaction monitoring (MRM) in both positive and negative ionization mode. Our results show that a linear relationship is established for each analyte of interest over the concentration range of 0.5–300 ng/mL with r ≥ 0.9976. The validated method is successfully used to compare the pharmacokinetic properties of crude and wine-processed Danshen extract orally administered to rats. Cmax of tanshinone IIA, Cmax, and AUC0-t of dihydrotanshinone I decrease significantly (p < 0.05) in the wine-processed group. No significant changes for other compounds are observed. These results might provide meaningful information for the further application of wine-processed Danshen and understanding of wine-processing mechanisms.
Collapse
|
12
|
Wang X, Qian Y, Li X, Jia X, Yan Z, Han M, Qiao M, Ma X, Chu Y, Zhou S, Yang W. Rapid determination of rosmarinic acid and its two bioactive metabolites in the plasma of rats by LC-MS/MS and application to a pharmacokinetics study. Biomed Chromatogr 2021; 35:e4984. [PMID: 33025603 DOI: 10.1002/bmc.4984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Rosmarinic acid (RA), an ester compound of caffeic acid (CA) and 3,4-dihydroxyphenyllacic acid, is widely distributed in the herbs of the Lamiaceae family and has shown a wide spectrum of pharmacological properties. CA and FA (ferulic acid) are two bioactive metabolites in vivo after oral administration of RA; however, a rapid and robust analytical approach that can enable the quantitative assay of RA and two bioactive metabolites is still lacking. A liquid chromatography/tandem mass spectrometry method was established that was capable of the quantitative determination of RA, CA and FA by negative-mode multiple reaction monitoring within 7 min using a Zorbax SB-C18 column and an isocratic elution. This assay method was validated as linear over the investigated ranges with correlation coefficients (r) > 0.9950. The intra- and inter-day precision was <10.65%, and the accuracies (relative error, %) <-6.41%. The validated approach was applied to a pharmacokinetics study of RA and its two metabolites in rats after oral and intravenous administration. RA was rapidly metabolized in both administration modes, whilst the metabolites CA and FA were only detectable by oral administration. The absolute availability of RA was calculated to be 4.13%.
Collapse
Affiliation(s)
- Xiangyang Wang
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Yuexin Qian
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Li
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Jia
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- China Pharmaceutical University, Nanjing, China
| | - Zhexuan Yan
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Min Han
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Miao Qiao
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Xiaohui Ma
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Yang Chu
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Shuiping Zhou
- Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
- Skate Key Laboratory of Core Technology in Innovation Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|